Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 235: 113427, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306212

RESUMO

The Hazard Quotient (HQ) compares field application rate to intrinsic toxicity assessed with sensitive indicator species. As a hazard indicator for risk assessment, the HQ must be calibrated against measured effects under field conditions. Because protection goals may be context specific, we analyse how choice of acceptance criteria affects setting of the HQ and calibrate HQ for various scenarios under the strict condition that no false negative conclusions may be reached. We use Non-Target Arthropod toxicity data from laboratory studies on inert (Tier 1) and on natural substrates (Tier 2) and calibrate the HQ using application rates and arthropod abundance counts from field studies in orchards, arable fields, and hay meadows in 34 locations in Western Europe. With 21 formulations (17 active substances) tested in mostly multi-rate field studies, our reference data base has 120/121 values at Tier 1/Tier 2, respectively. We use the Proportion of Affected Taxa and Duration of Effect to jointly define acceptance criteria, starting with No Observed Effects. Absence of field effects is correctly predicted with HQ < 1.3 at Tier 1 and HQ < 0.48 at Tier 2, but these settings result in a high proportion of false positive outcomes. Increasing accepted duration of effect from 0 to 4 to 8 weeks results in HQ-threshold changes from 1.3 to 6.4 to 250 for Tier 1 studies and from 0.48 to 1.1 to 5.7 for Tier 2 studies. This coincides with a clear decrease in false positive outcomes. Recovery within a year is correctly concluded for 73% of the products passing the corresponding Tier 1 HQ < 2600 and for 92% of products at Tier 2 (HQ <230). Our analysis shows that the calibration is appropriate for a broad geographical range, for in-field and off-field situations and for phytophagous and non-phytophagous species alike.


Assuntos
Artrópodes , Animais , Calibragem , Europa (Continente) , Medição de Risco/métodos
2.
Integr Environ Assess Manag ; 17(5): 905-910, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33788411

RESUMO

This paper complements recent considerations of specific protection goals (SPG) to inform risk assessments for non-target terrestrial plants (NTTP) in the European Union. The SPG options in-field appear to be of the most disruptive potential from agronomic perspective and are therefore investigated in more detail. Overarching prerequisites have been identified that need to be accounted for to ensure that any of the potential SPG options remain operational in a sustainable agricultural context. As soon as crop production is considered a desired ecosystem service for the in-field, its specific requirements in the context of sustainable agriculture have to be factored in. Good agricultural practices (GAPs), potential ecosystem disservices (e.g. weeds, pests and diseases) and supporting and regulating services need to be considered to ensure a successful and sustainable delivery of the ecosystem service crop production. Concerning in-field SPG options for NTTP specifically GAPs related to integrated weed management (IWM) require detailed assessment, as they individually and in combination have the purpose of weed control. Therefore, they result in specific implications to the environment, ecosystem services and biodiversity within the context of sustainable agricultural production. When diverging in-field ecosystem services are considered for the same context, the protection goals options require an additional assessment of synergies and trade-offs between the relevant ecosystem services (e.g. crop production, climate regulation and aesthetic values), a corresponding weighing and prioritization. Similarly, for biodiversity conservation, the trade-offs and synergies between sustainable crop production and specific habitat requirements need to be accounted for. Consequently, an interdisciplinary approach can ensure that SPG are operational by integrating a broad understanding of cropping systems, the environmental impact of the tools a farmer uses and the link between habitat availability, the impact of any of the applied tools on habitat quality and the broader landscape context. Integr Environ Assess Manag 2021;17:905-910. © 2021 Bayer AG, BASF SE and Syngenta. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Biodiversidade , Ecossistema , Agricultura , Conservação dos Recursos Naturais , Ecotoxicologia , União Europeia
3.
Environ Toxicol Chem ; 40(10): 2667-2679, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111321

RESUMO

The concept of source-sink dynamics as a potentially important component of metapopulation dynamics was introduced in the 1980s. The objective of the present review was to review the considerable body of work that has been developed, to consider its theoretical implications as well as to understand how source-sink dynamics may manifest under field conditions in the specific case of nontarget arthropods in the agricultural environment. Our review concludes that metapopulation dynamics based on field observations are often far more complex than existing theoretical source-sink models would indicate, because they are dependent on numerous population processes and influencing factors. The difficulty in identifying and measuring these factors likely explains why empirical studies assessing source-sink dynamics are scarce. Furthermore, we highlight the importance of considering the spatial and temporal heterogeneity of agricultural landscapes when assessing the population dynamics of nontarget arthropods in the context of the risk from the use of plant protection products. A need is identified to further develop and thoroughly validate predictive population models, which can incorporate all factors relevant to a specific system. Once reliable predictive models for a number of representative nontarget arthropod species are available, they could provide a meaningful tool for refined risk evaluations (higher tier level risk assessment), addressing specific concerns identified at the initial evaluation stages (lower tier level risk assessment). Environ Toxicol Chem 2021;40:2667-2679. © 2021 ERM, FMC, Syngenta, Bayer AG, BASF SE, Corteva agriscience. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Artrópodes , Agricultura , Animais , Ecotoxicologia , Dinâmica Populacional , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA