RESUMO
Emerging evidence suggests that dysregulation of neuroinflammation, particularly that orchestrated by microglia, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Danger signals including dead neurons, dystrophic axons, phosphorylated tau, and amyloid plaques alter the functional phenotype of microglia from a homeostatic (M0) to a neurodegenerative or disease-associated phenotype, which in turn drives neuroinflammation and promotes disease. Thus, therapies that target microglia activation constitute a unique approach for treating AD. Here, we report that nasally administered anti-CD3 monoclonal antibody in the 3xTg AD mouse model reduced microglial activation and improved cognition independent of amyloid beta deposition. In addition, gene expression analysis demonstrated decreased oxidative stress, increased axogenesis and synaptic organization, and metabolic changes in the hippocampus and cortex of nasal anti-CD3 treated animals. The beneficial effect of nasal anti-CD3 was associated with the accumulation of T cells in the brain where they were in close contact with microglial cells. Taken together, our findings identify nasal anti-CD3 as a unique form of immunotherapy to treat Alzheimer's disease independent of amyloid beta targeting.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Administração Intranasal , Peptídeos beta-Amiloides , Doenças Neuroinflamatórias , Anticorpos Monoclonais , Modelos Animais de DoençasRESUMO
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.
Assuntos
Microbioma Gastrointestinal , Hipuratos , Linfócitos T , Animais , Camundongos , Corpo Estriado , Neurônios , Comportamento CompulsivoRESUMO
BACKGROUND: Gamma-delta (γδ) T cells are a major cell population in the intestinal mucosa and are key mediators of mucosal tolerance and microbiota composition. Little is known about the mechanisms by which intestinal γδ T cells interact with the gut microbiota to maintain tolerance. RESULTS: We found that antibiotic treatment impaired oral tolerance and depleted intestinal γδ T cells, suggesting that the gut microbiota is necessary to maintain γδ T cells. We also found that mice deficient for γδ T cells (γδ-/-) had an altered microbiota composition that led to small intestine (SI) immune dysregulation and impaired tolerance. Accordingly, colonizing WT mice with γδ-/- microbiota resulted in SI immune dysregulation and loss of tolerance whereas colonizing γδ-/- mice with WT microbiota normalized mucosal immune responses and restored mucosal tolerance. Moreover, we found that SI γδ T cells shaped the gut microbiota and regulated intestinal homeostasis by secreting the fecal micro-RNA let-7f. Importantly, oral administration of let-7f to γδ-/- mice rescued mucosal tolerance by promoting the growth of the γδ-/--microbiota-depleted microbe Ruminococcus gnavus. CONCLUSIONS: Taken together, we demonstrate that γδ T cell-selected microbiota is necessary and sufficient to promote mucosal tolerance, is mediated in part by γδ T cell secretion of fecal micro-RNAs, and is mechanistically linked to restoration of mucosal immune responses. Video Abstract.