Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 17(16): 2465-72, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27298209

RESUMO

The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI.

2.
RSC Adv ; 8(6): 2872, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35543877

RESUMO

[This corrects the article DOI: 10.1039/C7RA09727A.].

3.
Chemosphere ; 207: 118-129, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29793023

RESUMO

LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P1δ, P2δ) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T1δ, T2δ). Enzymatic transformations of δ-HBCD, α1-PBCDol, one of the transformation products, and α2-PBCDol, its enantiomer, were studied and modeled with Michaelis-Menten (MM) kinetics. Respective MM-parameters KM, vmax, kcat/KM indicated that δ-HBCD is the best LinB substrate followed by α2- and α1-PBCDol. The stereochemistry of these transformations was modeled in silico, investigating respective enzyme-substrate (ES) and enzyme-product (EP) complexes. One of the four predicted ES-complexes led to the PBCDol product P1δ, identical to α2-PBCDol with the 1R,2R,5S,6R,9R,10S-configuration. An SN2-like substitution of bromine at C6 of δ-HBCD by Asp-108 of LinB and subsequent hydrolysis of the alkyl-enzyme led to α2-PBCDol. Modeling results further indicate that backside attacks at C1, C9 and C10 are reasonable too, selectively binding leaving bromide ions in a halide pocket found in LinB. Docking with α2-PBCDol, also allowed productive enzyme binding. A TBCD-1,5-diol with the 1S,2S,5R,6R,9S,10R-configuration is the predicted second-generation product T1δ. In conclusion, in vitro- and in silico findings now allow a detailed description of step-wise enzymatic dehalohydroxylation reactions of δ-HBCD to specific PBCDols and TBCDdiols at Å-resolution and predictions of their stereochemistry.


Assuntos
Simulação por Computador/estatística & dados numéricos , Hidrocarbonetos Bromados/química , Catálise , Cinética , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA