Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer ; 124(2): 315-324, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28976556

RESUMO

BACKGROUND: Phosphoinositide 3-kinase (PI3K) ß is the dominant isoform for PI3K activity in many phosphatase and tensin homolog (PTEN)-deficient tumor models. This was a first-in-human study to determine the maximum tolerated dose, safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of SAR260301, a potent PI3Kß-selective inhibitor (clinicaltrials.gov identifier NCT01673737). METHODS: Successive cohorts of patients with advanced solid tumors received increasing doses of oral SAR260301 according to a Bayesian escalation with an overdose-control process based on the occurrence of dose-limiting toxicity in the first 28-day cycle. Adverse events, tumor response, PK, and the effect of food on PK were evaluated. Target engagement was assessed in platelets. Physiologically-based PK modeling was used for exposure predictions. RESULTS: Twenty-one patients received treatment at doses ranging from 100 mg once daily to 440 mg/m2 twice daily. Dose-limiting toxicities included 1 episode of grade 3 pneumonitis (400 mg twice daily) and 1 grade 3 γ-glutamyltransferase increase (600 mg twice daily). The maximum tolerated dose was not reached. The most frequently occurring treatment-related adverse events were nausea, vomiting, and diarrhea (14% each). Pharmacologically active concentrations were reached, but SAR260301 was rapidly cleared, and exposures associated with antitumor activity in preclinical models were not maintained at the highest dose tested. Food further decreased SAR260301 exposure. CONCLUSIONS: SAR260301 had an acceptable safety profile, but exposure sufficient to inhibit the PI3K pathway was unachievable because of rapid clearance, and clinical development was terminated. These results demonstrate the importance of PK and pharmacodynamic assessments in early drug development. Cancer 2018;124:315-24. © 2017 American Cancer Society.


Assuntos
Indóis/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinonas/uso terapêutico , Adulto , Idoso , Teorema de Bayes , Feminino , Humanos , Indóis/efeitos adversos , Indóis/farmacocinética , Indóis/farmacologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Pirimidinonas/efeitos adversos , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia
2.
Br J Clin Pharmacol ; 80(3): 534-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26095234

RESUMO

AIM: Applying physiologically-based pharmacokinetic (PBPK) modelling in paediatric cancer drug development is still challenging. We aimed to demonstrate how PBPK modelling can be applied to optimize dose and sampling times for a paediatric pharmacokinetic (PK) bridging study in oncology and to compare with the allometric scaling population PK (AS-popPK) approach, using docetaxel as an example. METHODS: A PBPK model for docetaxel was first developed for adult cancer patients using Simcyp® and subsequently used to predict its PK profiles in children by accounting for age-dependent physiological differences. Dose (mg m(-2) ) requirements for children aged 0-18 years were calculated to achieve targeted exposure in adults. Simulated data were then analyzed using population PK modelling with MONOLIX® in order to perform design optimization with the population Fisher information matrix (PFIM). In parallel, the AS-popPK approach was performed for the comparison. RESULTS: The PBPK model developed for docetaxel adequately predicted its PK profiles in both adult and paediatric cancer patients (predicted clearance and volume of distribution within 1.5 fold of observed data). The revised dose of docetaxel for a child over 1.5 years old was higher than the adult dose. Considering clinical constraints, the optimal design contained two groups of 15 patients, having three or four sampling times and had good predicted relative standard errors (RSE<30%) for almost all parameters. The AS-popPK approach performed reasonably well but could not predict for very young children. CONCLUSION: This research shows the clinical utility of PBPK modelling in combination with population PK modelling and optimal design to support paediatric oncology development.


Assuntos
Antineoplásicos/farmacocinética , Modelos Biológicos , Neoplasias/metabolismo , Taxoides/farmacocinética , Adolescente , Adulto , Fatores Etários , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Simulação por Computador , Docetaxel , Descoberta de Drogas , Humanos , Lactente , Neoplasias/tratamento farmacológico , Valor Preditivo dos Testes , Taxoides/administração & dosagem , Taxoides/uso terapêutico , Distribuição Tecidual
3.
Antimicrob Agents Chemother ; 56(6): 3165-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22430976

RESUMO

Ferroquine (SSR97193), a ferrocene-quinoline conjugate, is a promising novel antimalarial currently undergoing clinical evaluation. This study characterizes its pharmacokinetic properties. Young male African volunteers with asymptomatic Plasmodium falciparum infection were administered a single oral dose (n = 40) or a repeated oral dose (n = 26) given over 3 days of ferroquine in two dose-escalation, double-blind, randomized, placebo-controlled clinical trials. In addition, a food interaction study was performed in a subsample of participants (n = 16). The studies were carried out in Lambaréné, Gabon. After single-dose administration of ferroquine, dose linearity was demonstrated in a dose range of 400 to 1,200 mg for maximum mean blood concentrations ([C(max)] 82 to 270 ng/ml) and in a dose range of 400 to 1,600 mg for overall exposure to ferroquine (area under the concentration-time curve [AUC], 13,100 to 49,200 ng · h/ml). Overall mean estimate for blood apparent terminal half-life of ferroquine was 16 days and 31 days for its active and major metabolite desmethylferroquine (SSR97213). In the 3-day repeated-dose study, C(max) and overall cumulated exposure to ferroquine (AUC(cum)) increased in proportion with the dose from day 1 to day 3 between 400 and 800 mg. No major food effect on ferroquine pharmacokinetics was observed after single administration of 100 mg of ferroquine except for a slight delay of time to maximum blood concentration (t(max)) by approximately 3 h. The pharmacokinetics of ferroquine and its active main metabolite are characterized by sustained levels in blood, and the properties of ferroquine as a partner drug in antimalarial combination therapy should be evaluated.


Assuntos
Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Compostos Ferrosos/farmacocinética , Compostos Ferrosos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/patogenicidade , Adolescente , Adulto , Ensaios Clínicos Fase I como Assunto , Humanos , Masculino , Metalocenos , Modelos Estatísticos , Plasmodium falciparum/efeitos dos fármacos , Adulto Jovem
4.
Clin Transl Sci ; 15(4): 1014-1026, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962074

RESUMO

Imeglimin is an orally administered first-in-class drug to treat type 2 diabetes mellitus (T2DM) and is mainly excreted unchanged by the kidneys. The present study aimed to define the pharmacokinetic (PK) characteristics of imeglimin using population PK analysis and to determine the optimal dosing regimen for Japanese patients with T2DM and chronic kidney disease (CKD). Imeglimin plasma concentrations in Japanese and Western healthy volunteers, and patients with T2DM, including patients with mild to severe CKD with an estimated glomerular filtration rate (eGFR) greater than 14 ml/min/1.73 m2 were included in a population PK analysis. PK simulations were conducted using a population PK model, and the area under concentration-time curve (AUC) was extrapolated with power regression analysis to lower eGFR. The influence of eGFR, weight, and age on apparent clearance and of dose on relative bioavailability were quantified by population PK analysis. Simulations and extrapolation revealed that the recommended dosing regimen based on the AUC was 500 mg twice daily (b.i.d.) for patients with eGFR 15-45 ml/min/1.73 m2 , and 500 mg with a longer dosing interval was suggested for those with eGFR less than 15. Simulations revealed that differences in plasma AUCs between Japanese and Western patients at the same dose were mainly driven by a difference in the eGFR and that the plasma AUC after 1000 and 1500 mg b.i.d. in Japanese and Western patients, respectively, was comparable in the phase IIb studies. These results indicate suitable dosages of imeglimin in the clinical setting of T2DM with renal impairment.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Japão , Masculino , Insuficiência Renal Crônica/tratamento farmacológico , Triazinas/uso terapêutico
5.
Eur J Pharm Sci ; 96: 626-642, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693299

RESUMO

Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp® Simulator, and GastroPlus™) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (Foral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foral was also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. Foral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.


Assuntos
Biofarmácia/métodos , Simulação por Computador , Modelos Biológicos , Preparações Farmacêuticas/classificação , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
6.
Eur J Pharm Sci ; 96: 610-625, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816631

RESUMO

Orally administered drugs are subject to a number of barriers impacting bioavailability (Foral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm-institution-software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two-fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, Foral and relative AUC (Frel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large-scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.


Assuntos
Biofarmácia/métodos , Simulação por Computador , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
7.
Eur J Pharm Sci ; 96: 598-609, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671970

RESUMO

Predicting oral bioavailability (Foral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9L/h (interquartile range: 11.6-43.6L/h; n=23), volume of distribution was 80.8L (54.5-239L; n=23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n=22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.


Assuntos
Biofarmácia/métodos , Bases de Dados Factuais , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA