Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(3): 2113-2119, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32074449

RESUMO

Exciton-polaritons represent a promising platform for studying quantum fluids of light and realizing prospective all-optical devices. Here we report on the experimental demonstration of exciton-polaritons at room temperature in resonant metasurfaces made from a sub-wavelength two-dimensional lattice of perovskite pillars. The strong coupling regime is revealed by both angular-resolved reflectivity and photoluminescence measurements, showing anticrossing between photonic modes and the exciton resonance with a Rabi splitting in the 200 meV range. Moreover, by tailoring the photonic Bloch mode to which perovskite excitons are coupled, polaritonic dispersions are engineered exhibiting linear, parabolic, and multivalley dispersions. All of our results are perfectly reproduced by both numerical simulations based on a rigorous coupled wave analysis and an elementary model based on a quantum theory of radiation-matter interaction. Our results suggest a new approach to study exciton-polaritons and pave the way toward large-scale and low-cost integrated polaritonic devices operating at room temperature.

2.
Langmuir ; 36(49): 14960-14966, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33256413

RESUMO

Macropatterned and micropatterned gold/silicon dioxide/titanium tungsten (Au/SiO2/TiW) substrates were orthogonally functionalized: three different molecules (monovalent silane, thiol, and phosphonic acid) were used to specifically form organolayers on Au, SiO2, or TiW areas of patterned substrates. The orthogonality of the functionalization (i.e., selective grafting of thiol on Au, phosphonic acid on TiW, and silane on SiO2) was assessed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements. These results are especially promising for the selective anchoring of targets (e.g., biomolecules, nanoparticles, nanowires, nanotubes, or other nano-objects) onto patterned zones of multimaterial substrates, such as nanosensors or other nanodevices.

3.
Nanotechnology ; 30(32): 325601, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30939458

RESUMO

The evolution of nanobiosensors stresses the need for multi-material nanopatterned surfaces to enhance sensing performances. Titanium tungsten (TiW) has been mastered and routinely implemented in nanoelectronic devices, in a reproducible way and at industrial production scales. Such a material may be envisioned for use in (bio)chemical nanoelectronic sensors, but the surface functionalization of such material has yet to be studied. In the present article, the orthogonal chemical functionalization of patterned Au on TiW substrates has been explored for the first time. Surface functionalizations were assessed by x-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy and time-of-flight secondary ion mass spectrometry imaging. Au/TiW patterned substrates were functionalized with mercapto-undecamine. Thanks to the orthogonality of thiol/Au versus phosphonic acid/TiW reactions, only the Au features were modified leading to the amine derivatized surface. This allowed for the localizing of carboxy-functionalized nanoparticles by electrostatic interaction on Au with a selectivity above 10 when compared to TiW.

4.
Opt Express ; 17(12): 9780-8, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19506627

RESUMO

2D photonic crystal (2D PC) structures consisting in a square lattice of Indium Phosphide (InP) microrods bonded on a Silicon/Silica Bragg mirror are experimentally investigated. We focus on slow Bloch modes above the light line, especially at the Gamma-point where a vertical emission can be obtained. Stimulated emission around 1.5 microm is demonstrated in such structures, at room temperature, for the first time. In addition the achieved threshold power lies within the range reported for surface emitting devices based on conventional lattices of holes. It is shown that the laser mode is laterally confined by a carrier induced refractive index change, under pulsed excitation. It is also demonstrated that this type of 2D PC is well suited for sensors integrated in microfluidic systems.


Assuntos
Cristalização/métodos , Índio/química , Lasers , Lentes , Fosfinas/química , Refratometria/instrumentação , Dióxido de Silício/química , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Índio/efeitos da radiação , Fosfinas/efeitos da radiação , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Propriedades de Superfície
5.
Artigo em Inglês | MEDLINE | ID: mdl-16962832

RESUMO

This paper describes the fabrication, the characterization and the applications of a capillary electrophoresis microchip. This hybrid device (glass/PDMS) features channels and optical waveguides integrated in one common substrate. It can be used for electrophoretic separation and fluorimetric detection of molecules. The microfluidic performance of the device is demonstrated by capillary zone and gel electrophoresis of proteins.


Assuntos
Eletroforese Capilar/métodos , Técnicas Analíticas Microfluídicas/métodos , Óptica e Fotônica/instrumentação , Proteínas/isolamento & purificação , Carbocianinas/isolamento & purificação , Eletro-Osmose , Reprodutibilidade dos Testes , Estreptavidina/isolamento & purificação
6.
Methods Mol Biol ; 949: 125-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329440

RESUMO

In this chapter an overview of manufacturing methods, leading to the fabrication of microstructures in glass substrates, is presented. Glass is a material of excellent optical properties, a very good electric insulator, biocompatible and chemically stable. In addition to its intrinsic qualities, glass can be processed with the use of manufacturing methods originating from the microelectronic industry. In this text two complete manufacturing protocols are described, each composed of standard microfabrication steps; namely, the deposition of masking layers, photolithographic patterning and pattern transfer via wet or dry etching. As a result, a set of building blocks is provided, allowing the manufacture of various microfluidic components that are frequently used in the domain of micro-total analysis system technology.


Assuntos
Vidro/química , Microtecnologia/métodos , Microtecnologia/instrumentação
7.
Methods Mol Biol ; 949: 141-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329441

RESUMO

The capping of microfluidic features fabricated in glass substrates is achievable by various technological methods. Of the entire spectrum of possibilities (gluing, glass bonding via intermediate layers, pressure or plasma-assisted glass bonding, etc.) a detailed description of three techniques is presented here. The first is a low temperature PDMS-glass adhesion bonding, the second is medium temperature pressure assisted glass-glass bonding, and finally, high temperature glass-glass fusion bonding. All these protocols allow completion of the manufacturing process for a fully enclosed microfluidic chip. Nevertheless, as they are complementary rather than competing methods, they effectively extend the range of tools available to fabricate lab-on-a-chip microdevices. Each has its own merits and each could feasibly be used at different developmental stages of a given microfluidic device.


Assuntos
Vidro/química , Microtecnologia/métodos , Adesivos/química , Dimetilpolisiloxanos/química , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA