Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067503

RESUMO

Erwinia amylovora is a Gram-negative bacterium, responsible for the fire blight disease in Rosaceae plants. Its virulence is correlated with the production of an exopolysaccharide (EPS) called amylovoran, which protects the bacterium from the surrounding environment and helps its diffusion inside the host. Amylovoran biosynthesis relies on the expression of twelve genes clustered in the ams operon. One of these genes, amsI, encodes for a Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) called EaAmsI, which plays a key role in the regulation of the EPS production pathway. For this reason, EaAmsI was chosen in this work as a target for the development of new antibacterial agents against E. amylovora. To achieve this aim, a set of programs (DOCK6, OpenEye FRED) was selected to perform a virtual screening using a database of ca. 700 molecules. The six best-scoring compounds identified were tested in in vitro assays. A complete inhibition kinetic characterization carried out on the most promising molecule (n-Heptyl ß-D-glucopyranoside, N7G) showed an inhibition constant of 7.8 ± 0.6 µM. This study represents an initial step towards the development of new EaAmsI inhibitors able to act as antibacterial agents against E. amylovora infections.


Assuntos
Erwinia amylovora , Erwinia , Malus , Malus/metabolismo , Virulência , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Erwinia/genética , Erwinia/metabolismo
2.
Chemistry ; 28(64): e202201770, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35994380

RESUMO

Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.


Assuntos
Hidroquinonas , Urease , Humanos , Urease/química , Canavalia/metabolismo , Quinonas
3.
Angew Chem Int Ed Engl ; 60(11): 6029-6035, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245574

RESUMO

The inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by a class of six aromatic poly-hydroxylated molecules, namely mono- and dimethyl-substituted catechols, was investigated on the basis of the inhibitory efficiency of the catechol scaffold. The aim was to probe the key step of a mechanism proposed for the inhibition of SPU by catechol, namely the sulfanyl radical attack on the aromatic ring, as well as to obtain critical information on the effect of substituents of the catechol aromatic ring on the inhibition efficacy of its derivatives. The crystal structures of all six SPU-inhibitors complexes, determined at high resolution, as well as kinetic data obtained on JBU and theoretical studies of the reaction mechanism using quantum mechanical calculations, revealed the occurrence of an irreversible inactivation of urease by means of a radical-based autocatalytic multistep mechanism, and indicate that, among all tested catechols, the mono-substituted 3-methyl-catechol is the most efficient inhibitor for urease.


Assuntos
Catecóis/farmacologia , Teoria da Densidade Funcional , Inibidores Enzimáticos/farmacologia , Compostos de Sulfidrila/farmacologia , Urease/antagonistas & inibidores , Catecóis/química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Sporosarcina/enzimologia , Compostos de Sulfidrila/química , Urease/metabolismo
4.
J Biol Inorg Chem ; 25(6): 829-845, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32809087

RESUMO

This review is an attempt to retrace the chronicle that starts from the discovery of the role of nickel as the essential metal ion in urease for the enzymatic catalysis of urea, a key step in the biogeochemical cycle of nitrogen on Earth, to the most recent progress in understanding the chemistry of this historical enzyme. Data and facts are presented through the magnifying lenses of the authors, using their best judgment to filter and elaborate on the many facets of the research carried out on this metalloenzyme over the years. The tale is divided in chapters that discuss and describe the results obtained in the subsequent leaps in the knowledge that led from the discovery of a biological role for Ni to the most recent advancements in the comprehension of the relationship between the structure and function of urease. This review is intended not only to focus on the bioinorganic chemistry of this beautiful metal-based catalysis, but also, and maybe primarily, to evoke inspiration and motivation to further explore the realm of bio-based coordination chemistry.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Níquel/química , Urease/química , Urease/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Enterobacter aerogenes/enzimologia , Helicobacter pylori/enzimologia , Conformação Proteica , Transdução de Sinais , Sporosarcina/enzimologia , Relação Estrutura-Atividade
5.
Soft Matter ; 16(42): 9799-9815, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33005911

RESUMO

We explore how different types of solvent influence the rheological properties of non-aqueous Carbopol dispersions from the dilute to the jammed state. In novel non-aqueous formulations, polar solvents are used more and more frequently, because they can form Carbopol microgels without the need of any neutralizing agents. However, the swelling behaviour of Carbopol molecules in the absence of water, when ionic forces are weak, is still poorly understood. To this end, we study the swelling behaviour of Carbopol 974P NF in different polar solvents, i.e. glycerol, PEG400 and mixtures of the two solvents, by mapping the rheological behaviour of Carbopol suspensions from very dilute to highly concentrated conditions. The rheological study reveals that the onset of the jamming transition occurs at different critical polymer concentrations depending on the solvents used. Nevertheless, once the jammed state is reached, both elastic and yielding behaviours are scalable with the particle volume fraction. These results suggest that the type of solvent influences the final volume of the single Carbopol particles but does not alter the interactions between the particles. The final radius of the swollen particles is estimated from shear rheology measurements in dilute conditions, showing a decrease of the final swelling ratio of Carbopol molecules of almost 50% for PEG400 solutions, a result that confirms the shift to higher values of the critical jamming concentration obtained from linear viscoelasticity for the same solutions.

6.
Chemistry ; 25(52): 12145-12158, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31271481

RESUMO

Urease uses a cluster of two NiII ions to activate a water molecule for urea hydrolysis. The key to this unsurpassed enzyme is a change in the conformation of a flexible structural motif, the mobile flap, which must be able to move from an open to a closed conformation to stabilize the chelating interaction of urea with the NiII cluster. This conformational change brings the imidazole side chain functionality of a critical histidine residue, αHis323, in close proximity to the site that holds the transition state structure of the reaction, facilitating its evolution to the products. Herein, we describe the influence of the solution pH in modulating the conformation of the mobile flap. High-resolution crystal structures of urease inhibited in the presence of N-(n-butyl)phosphoric triamide (NBPTO) at pH 6.5 and pH 7.5 are described and compared to the analogous structure obtained at pH 7.0. The kinetics of urease in the absence and presence of NBPTO are investigated by a calorimetric assay in the pH 6.0-8.0 range. The results indicate that pH modulates the protonation state of αHis323, which was revealed to have pKa =6.6, and consequently the conformation of the mobile flap. Two additional residues (αAsp224 and αArg339) are shown to be key factors for the conformational change. The role of pH in modulating the catalysis of urea hydrolysis is clarified through the molecular and structural details of the interplay between protein conformation and solution acidity in the paradigmatic case of a metalloenzyme.


Assuntos
Níquel/química , Urease/química , Amidas/química , Catálise , Domínio Catalítico , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Compostos Organofosforados/química , Conformação Proteica , Ureia/química
7.
Angew Chem Int Ed Engl ; 58(22): 7415-7419, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30969470

RESUMO

Urease, the most efficient enzyme known, contains an essential dinuclear NiII cluster in the active site. It catalyzes the hydrolysis of urea, inducing a rapid pH increase that has negative effects on human health and agriculture. Thus, the control of urease activity is of utmost importance in medical, pharmaceutical, and agro-environmental applications. All known urease inhibitors are either toxic or inefficient. The development of new and efficient chemicals able to inhibit urease relies on the knowledge of all steps of the catalytic mechanism. The short (microseconds) lifetime of the urease-urea complex has hampered the determination of its structure. The present study uses fluoride to substitute the hydroxide acting as the co-substrate in the reaction, preventing the occurrence of the catalytic steps that follow substrate binding. The 1.42 Šcrystal structure of the urease-urea complex, reported here, resolves the enduring debate on the mechanism of this metalloenzyme.


Assuntos
Níquel/química , Sporosarcina/enzimologia , Ureia/metabolismo , Urease/química , Urease/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Cinética , Modelos Moleculares , Conformação Proteica
8.
Biochemistry ; 56(40): 5391-5404, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28857549

RESUMO

The nickel-dependent enzyme urease is a virulence factor for a large number of pathogenic and antibiotic-resistant bacteria, as well as a negative factor for the efficiency of soil nitrogen fertilization for crop production. The use of urease inhibitors to offset these effects requires knowledge, at a molecular level, of their mode of action. The 1.28 Å resolution structure of the enzyme-inhibitor complex obtained upon incubation of Sporosarcina pasteurii urease with N-(n-butyl)thiophosphoric triamide (NBPT), a molecule largely utilized in agriculture, reveals the presence of the monoamidothiophosphoric acid (MATP) moiety, obtained upon enzymatic hydrolysis of the diamide derivative of NBPT (NBPD) to yield n-butyl amine. MATP is bound to the two Ni(II) ions in the active site of urease using a µ2-bridging O atom and terminally bound O and NH2 groups, with the S atom of the thiophosphoric amide pointing away from the metal center. The mobile flap modulating the size of the active site cavity is found in the closed conformation. Docking calculations suggest that the interaction between urease in the open flap conformation and NBPD involves a role for the conserved αArg339 in capturing and orienting the inhibitor prior to flap closure. Calorimetric and spectrophotometric determinations of the kinetic parameters of this inhibition indicate the occurrence of a reversible slow inhibition mode of action, characterized, for both bacterial and plant ureases, by a very small value of the dissociation constant of the urease-MATP complex. No need to convert NBPT to its oxo derivative NBPTO, as previously proposed, is necessary for urease inhibition.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Compostos Organofosforados/metabolismo , Compostos Organofosforados/farmacologia , Urease/antagonistas & inibidores , Urease/metabolismo , Domínio Catalítico , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Sporosarcina/enzimologia , Ureia/metabolismo , Urease/química
10.
Anal Bioanal Chem ; 408(28): 7971-7980, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27580605

RESUMO

NikR is a transcription factor that regulates the expression of Ni(II)-dependent enzymes and other proteins involved in nickel trafficking. In the human pathogenic bacterium Helicobacter pylori, NikR (HpNikR) controls, among others, the expression of the Ni(II) enzyme urease by binding the double-strand DNA (dsDNA) operator region of the urease promoter (OP ureA ) in a Ni(II)-dependent mode. This article describes the complementary use of surface plasmon resonance (SPR) spectroscopy and isothermal titration calorimetry (ITC) to carry out a mechanistic characterization of the HpNikR-OP ureA interaction. An active surface was prepared by affinity capture of OP ureA and validated for the recognition process in the SPR experiments. Subsequently, the Ni(II)-dependent affinity of the transcription factor for its operator region was assessed through kinetic evaluation of the binding process at variable Ni(II) concentrations. The kinetic data are consistent with a two-step binding mode involving an initial encounter between the two interactants, followed by a conformational rearrangement of the HpNikR-OP ureA complex, leading to high affinity binding. This conformational change is only observed in the presence of the full set of four Ni(II) ions bound to the protein. The SPR assay developed and validated in this study constitutes a suitable method to screen potential drug lead candidates acting as inhibitors of this protein-dsDNA interaction. Graphical Abstract Pictorial representation of the interaction between HpNikR, flowing in solution, and the OP ureA urease promoter immobilized on the sensor chip surface.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Regiões Operadoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/genética , Descoberta de Drogas , Modelos Biológicos , Ligação Proteica , Proteínas Repressoras/genética , Ressonância de Plasmônio de Superfície , Titulometria , Urease/genética , Urease/metabolismo
11.
Sensors (Basel) ; 16(12)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983638

RESUMO

Marine plankton abundance and dynamics in the open and interior ocean is still an unknown field. The knowledge of gelatinous zooplankton distribution is especially challenging, because this type of plankton has a very fragile structure and cannot be directly sampled using traditional net based techniques. To overcome this shortcoming, Computer Vision techniques can be successfully used for the automatic monitoring of this group.This paper presents the GUARD1 imaging system, a low-cost stand-alone instrument for underwater image acquisition and recognition of gelatinous zooplankton, and discusses the performance of three different methodologies, Tikhonov Regularization, Support Vector Machines and Genetic Programming, that have been compared in order to select the one to be run onboard the system for the automatic recognition of gelatinous zooplankton. The performance comparison results highlight the high accuracy of the three methods in gelatinous zooplankton identification, showing their good capability in robustly selecting relevant features. In particular, Genetic Programming technique achieves the same performances of the other two methods by using a smaller set of features, thus being the most efficient in avoiding computationally consuming preprocessing stages, that is a crucial requirement for running on an autonomous imaging system designed for long lasting deployments, like the GUARD1. The Genetic Programming algorithm has been installed onboard the system, that has been operationally tested in a two-months survey in the Ligurian Sea, providing satisfactory results in terms of monitoring and recognition performances.


Assuntos
Gelatina/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Oceanos e Mares , Zooplâncton/fisiologia , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/instrumentação
12.
J Biol Inorg Chem ; 20(6): 1021-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26204982

RESUMO

Helicobacter pylori (Hp) is a carcinogen that relies on Ni(II) to survive in the extreme pH conditions of the human guts. The regulation of genes coding for Ni(II) enzymes and proteins is effected by the nickel-responsive transcription factor NikR, composed of a DNA-binding domain (DBD) and a metal-binding domain (MBD). The scope of this study is to obtain the molecular details of the HpNikR interaction with the urease operator OP ureA , in solution. The size of the full-length protein prevents the characterization of the HpNikR-OP ureA interaction using NMR. We thus investigated the two separate domains of HpNikR. The conservation of their oligomeric state was established by multiple-angle light scattering. Isothermal calorimetric titrations indicated that the thermodynamics of Ni(II) binding to the isolated MBD is independent of the presence of the adjacent DBDs. The NMR spectra of the isolated DBD support considerable conservation of its structural properties. The spectral perturbations induced on the DBD by OP ureA provided information useful to calculate a structural model of the HpNikR-OP ureA complex using a docking computational protocol. The NMR assignment of the residues involved in the protein-DNA interaction represents a starting point for the development of drugs potentially able to eradicate H. pylori infections. All evidences so far collected, in this and previous studies, consistently indicate that binding of Ni(II) to the MBD increases the HpNikR-DNA affinity by modulating the dynamic, and not the structural, properties of the protein, suggesting that the formation of a stable complex relies upon an induced fit mechanism.


Assuntos
Proteínas de Bactérias/genética , Regiões Operadoras Genéticas/genética , Proteínas Repressoras/genética , Helicobacter pylori , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Níquel , Fragmentos de Peptídeos/genética , Proteínas Recombinantes/genética , Urease/genética
13.
J Biol Inorg Chem ; 19(8): 1243-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113581

RESUMO

Urease is a nickel-dependent enzyme and a virulence factor for ureolytic bacterial human pathogens, but it is also necessary to convert urea, the most worldwide used fertilizer, into forms of nitrogen that can be taken up by crop plants. A strategy to control the activity of urease for medical and agricultural applications is to use enzyme inhibitors. Fluoride is a known urease inhibitor, but the structural basis of its mode of inhibition is still undetermined. Here, kinetic studies on the fluoride-induced inhibition of urease from Sporosarcina pasteurii, a widespread and highly ureolytic soil bacterium, were performed using isothermal titration calorimetry and revealed a mixed competitive and uncompetitive mechanism. The pH dependence of the inhibition constants, investigated in the 6.5-8.0 range, reveals a predominant uncompetitive mechanism that increases by increasing the pH, and a lesser competitive inhibition that increases by lowering the pH. Ten crystal structures of the enzyme were independently determined using five crystals of the native form and five crystals of the protein crystallized in the presence of fluoride. The analysis of these structures revealed the presence of two fluoride anions coordinated to the Ni(II) ions in the active site, in terminal and bridging positions. The present study consistently supports an interaction of fluoride with the nickel centers in the urease active site in which one fluoride competitively binds to the Ni(II) ion proposed to coordinate urea in the initial step of the catalytic mechanism, while another fluoride uncompetitively substitutes the Ni(II)-bridging hydroxide, blocking its nucleophilic attack on urea.


Assuntos
Inibidores Enzimáticos/farmacologia , Fluoretos/farmacologia , Sporosarcina/enzimologia , Termodinâmica , Urease/antagonistas & inibidores , Inibidores Enzimáticos/química , Fluoretos/química , Modelos Moleculares , Conformação Molecular , Urease/metabolismo
14.
J Biol Inorg Chem ; 19(3): 319-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24292245

RESUMO

Helicobacter pylori UreF (HpUreF) is involved in the insertion of Ni(2+) in the urease active site. The recombinant protein in solution is a dimer characterized by an extensive α-helical structure and a well-folded tertiary structure. HpUreF binds two Ni(2+) ions per dimer, with a micromolar dissociation constant, as shown by calorimetry. X-ray absorption spectroscopy indicated that the Ni(2+) ions reside in a five-coordinate pyramidal geometry comprising exclusively N/O-donor ligands derived from the protein, including one or two histidine imidazole and carboxylate ligands. Binding of Ni(2+) does not affect the solution properties of the protein. Mutation to alanine of His229 and/or Cys231, a pair of residues located on the protein surface that interact with H. pylori UreD, altered the affinity of the protein for Ni(2+). This result, complemented by the findings from X-ray absorption spectroscopy, indicates that the Ni(2+) binding site involves His229, and that Cys231 has an indirect structural role in metal binding. An in vivo assay of urease activation demonstrated that H229A HpUreF, C231A HpUreF, and H229/C231 HpUreF are significantly less competent in this process, suggesting a role for a Ni(2+) complex with UreF in urease maturation. This hypothesis was supported by calculations revealing the presence of a tunnel that joins the Cys-Pro-His metal binding site on UreG and an opening on the UreD surface, passing through UreF close to His229 and Cys231, in the structure of the H. pylori UreDFG complex. This tunnel could be used to transfer nickel into the urease active site during apoenzyme-to-holoenzyme activation.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Urease/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação/fisiologia , Células Cultivadas , Helicobacter pylori/enzimologia , Holoenzimas/química , Holoenzimas/metabolismo , Níquel/química , Urease/química , Espectroscopia por Absorção de Raios X/métodos
15.
Dalton Trans ; 53(25): 10553-10562, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38847020

RESUMO

Bismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2H2O, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi2(HEDTA)2(µ-D-His)2]·6H2O + [Bi2(HEDTA)2(µ-L-His)2]·6H2O, (ii) enantiopure L-histidine to yield [Bi2(HEDTA)2(µ-L-His)2]·6H2O, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2H2O. All compounds, synthesised by mechanochemical methods and by slurry, were characterized in the solid state by calorimetric (DSC and TGA) and spectroscopic (IR) methods, and their structures were determined using powder X-ray diffraction (PXRD) data. All compounds show an appreciable solubility in water, with values ranging from 6.8 mg mL-1 for the starting compound [Bi(HEDTA)]·2H2O to 36 mg mL-1 for [Bi2(HEDTA)2(µ-L-His)2]·6H2O. The three synthesized compounds as well as [Bi(HEDTA)]·2H2O were then tested for inhibition activity against urease. Surprisingly, no enzymatic inhibition was observed during in vitro assays using Canavalia ensiformis urease and in vivo assays using cultures of Helicobacter pylori, raising questions on the efficacy of Bi(III) compounds to counteract the negative effects of urease activity in the agro-environment and in human health.


Assuntos
Bismuto , Inibidores Enzimáticos , Solubilidade , Urease , Bismuto/química , Urease/antagonistas & inibidores , Urease/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Agroquímicos/farmacologia , Agroquímicos/química
16.
Chem Sci ; 15(2): 651-665, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179545

RESUMO

Essential trace metals play key roles in the survival, replication, and virulence of bacterial pathogens. Helicobacter pylori (H. pylori), the main bacterial cause of gastric ulcers, requires Ni(ii) to colonize and persist in the acidic environment inside the stomach, exploiting the nickel-containing enzyme urease to catalyze the hydrolysis of urea to ammonia and bicarbonate and create a pH-buffered microenvironment. Urease utilizes Ni(ii) as a catalytic cofactor for its activity. In ureolytic bacteria, unique transmembrane (TM) transporters evolved to guarantee the selective uptake and efflux of Ni(ii) across cellular membranes to meet the cellular requirements. NixA is an essential Ni(ii) transporter expressed by H. pylori when the extracellular environment experiences a drop in pH. This Class I nickel-cobalt transporter of the NiCoT family catalyzes the uptake of Ni(ii) across the inner membrane from the periplasm. In this study, we characterized NixA using a platform whereby, for the first time on a NiCoT transporter, recombinantly expressed and purified NixA and key mutants in the translocation pathway have been reconstituted in artificial lipid bilayer vesicles (proteoliposomes). Fluorescent sensors responsive to Ni(ii) transport (Fluozin-3-Zn(ii)), luminal pH changes (pyranine), and membrane potential (oxonol VI) were encapsulated in the proteoliposomes lumen to monitor, in real-time, NixA transport properties and translocation mechanism. Kinetic transport analysis revealed that NixA is highly selective for Ni(ii) with no substrate promiscuity towards Co(ii), the other putative metal substrate of the NiCoT family, nor Zn(ii). NixA-mediated Ni(ii) transport exhibited a Michaelis-Menten-type saturable substrate concentration dependence, with an experimental KM, Ni(ii) = 31.0 ± 1.2 µM. Ni(ii) transport by NixA was demonstrated to be electrogenic, and metal translocation did not require a proton motive force, resulting in the generation of a positive-inside transmembrane potential in the proteoliposome lumen. Mutation analysis characterized key transmembrane residues for substrate recognition, binding, and/or transport, suggesting the presence of a three-step transmembrane translocation conduit. Taken together, these investigations reveal that NixA is a Ni(ii)-selective Class I NiCoT electrogenic uniporter. The work also provides an in vitro approach to characterize the transport properties of metal transporters responsible for Ni(ii) acquisition and extrusion in prokaryotes.

17.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352570

RESUMO

This manuscript describes the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL pro from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL pro is the main protease that plays a crucial role of producing the whole array of proteins necessary for the viral infection that caused the spread of COVID-19, responsible for millions of deaths worldwide as well as global economic and healthcare crises in recent years. The proposed calorimetric method proved to have several advantages over the two types of enzymatic assays so far applied to this system, namely Förster Resonance Energy Transfer (FRET) and Liquid Chromatography-Mass Spectrometry (LC-MS). The developed ITC-based assay provided a rapid response to 3CL pro activity, which was used to directly derive the kinetic enzymatic constants K M and k cat reliably and reproducibly, as well as their temperature dependence, from which the activation energy of the reaction was obtained for the first time. The assay further revealed the existence of two modes of inhibition of 3CL pro by Ensitrelvir, namely a competitive mode as previously inferred by crystallography as well as an unprecedented uncompetitive mode, further yielding the respective inhibition constants with high precision. The calorimetric method described in this paper is thus proposed to be generally and widely used in the discovery and development of drugs targeting 3CL pro .

18.
J Inorg Biochem ; 250: 112398, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879152

RESUMO

This paper reports on the molecular details of the reactivity of urease, a nickel-dependent enzyme that catalyses the last step of organic nitrogen mineralization, with thiuram disulphides, a class of molecules known to inactivate the enzyme with high efficacy but for which the mechanism of action had not been yet established. IC50 values of tetramethylthiuram disulphide (TMTD or Thiram) and tetraethylthiuram disulphide (TETD or Disulfiram) in the low micromolar range were determined for plant and bacterial ureases. The X-ray crystal structure of Sporosarcina pasteurii urease inactivated by Thiram, determined at 1.68 Å resolution, revealed the presence of a covalent modification of the catalytically essential cysteine residue. This is located on the flexible flap that modulates the size of the active site channel and cavity. Formation of a Cys-S-S-C(S)-N(CH3)2 functionality responsible for enzyme inactivation was observed. Quantum-mechanical calculations carried out to rationalise the large reactivity of the active site cysteine support the view that a conserved histidine residue, adjacent to the cysteine in the active site flap, modulates the charge and electron density along the thiol SH bond by shifting electrons towards the sulphur atom and rendering the thiol proton more reactive. We speculate that this proton could be transferred to the nickel-coordinated urea amide group to yield a molecule of ammonia from the generated Curea-NH3+ functionality during catalysis.


Assuntos
Níquel , Tiram , Níquel/química , Urease/química , Cisteína , Prótons , Dissulfiram , Ureia
19.
J Chromatogr A ; 1721: 464818, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38564929

RESUMO

Comprehensive two-dimensional liquid chromatography (LCxLC) represents a valuable alternative to conventional single column, or one-dimensional, liquid chromatography (1D-LC) for resolving multiple components in a complex mixture in a short time. However, developing LCxLC methods with trial-and-error experiments is challenging and time-consuming, which is why the technique is not dominant despite its significant potential. This work presents a novel shortcut model to in-silico predicting retention time and peak width within an RPLCxRPLC separation system (i.e., LCxLC systems that use reversed-phase columns (RPLC) in both separation dimensions). Our computationally effective model uses the hydrophobic-subtraction model (HSM) to predict retention and considers limitations due to the sample volume, undersampling and the maximum pressure drop. The shortcut model is used in a two-step strategy for sample-dependent optimization of RPLCxRPLC separation systems. In the first step, the Kendall's correlation coefficient of all possible combinations of available columns is evaluated, and the best column pair is selected accordingly. In the second step, the optimal values of design variables, flow rate, pH and sample loop volume, are obtained via multi-objective stochastic optimization. The strategy is applied to method development for the separation of 8, 12 and 16 component mixtures. It is shown that the proposed strategy provides an easy way to accelerate method development for full-comprehensive 2D-LC systems as it does not require any experimental campaign and an entire optimization run can take less than two minutes.


Assuntos
Cromatografia de Fase Reversa , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos
20.
Org Process Res Dev ; 28(7): 2755-2764, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39055968

RESUMO

The fourth industrial revolution is gaining momentum in the pharmaceutical industry. However, particulate processes and suspension handling remain big challenges for automation and the implementation of real-time particle size analysis. Moreover, the development of antisolvent crystallization processes is often limited by the associated time-intensive experimental screenings. This work demonstrates a fully automated modular crystallization platform that overcomes these bottlenecks. The system combines automated crystallization, sample preparation, and immediate crystal size analysis via online laser diffraction (LD) and provides a technology for rapidly screening crystallization process parameters and crystallizer design spaces with minimal experimental effort. During the LD measurements, to avoid multiple scattering events, crystal suspension samples are diluted automatically. Multiple software tools, i.e., LabVIEW, Python, and PharmaMV, and logic algorithms are integrated in the platform to facilitate automated control of all the sensors and equipment, enabling fully automated operation. A customized graphical user interface is provided to operate the crystallization platform automatically and to visualize the measured crystal size and the crystal size distribution of the suspension. Antisolvent crystallization of ibuprofen, with ethanol as solvent and water with Soluplus (an additive) as antisolvent, is used as a case study. The platform is demonstrated for antisolvent crystallization of small ibuprofen crystals in a confined impinging jet crystallizer, performing automated preplanned user-defined experiments with online LD analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA