RESUMO
The zoonotic association between Campylobacter bacteria in poultry and humans has been characterized by decades of research which has attempted to elucidate the epidemiology of this complex relationship and to reduce carriage within poultry. While much work has focused on the mechanisms facilitating its success in contaminating chicken flocks (and other animal hosts), it remains difficult to consistently exclude Campylobacter under field conditions. Within the United Kingdom poultry industry, various bird genotypes with widely varying growth rates are available to meet market needs and consumer preferences. However, little is known about whether any differences in Campylobacter carriage exist across this modern broiler range. The aim of this study was to establish if a relationship exists between growth rate or breed and cecal Campylobacter concentration after natural commercial flock Campylobacter challenge. In one investigation, four pure line genotypes of various growth rates were grown together, while in the second, eight different commercial broiler genotypes were grown individually. In both studies, the Campylobacter concentration was measured in the ceca at 42 days of age, revealing no significant difference in cecal load between birds of different genotypes both in mixed- and single-genotype pens. This is important from a public health perspective and suggests that other underlying reasons beyond genotype are likely to control and affect Campylobacter colonization within chickens. Further studies to gain a better understanding of colonization dynamics and subsequent proliferation are needed, as are novel approaches to reduce the burden in poultry.
Assuntos
Infecções por Campylobacter/veterinária , Campylobacter/crescimento & desenvolvimento , Campylobacter/isolamento & purificação , Portador Sadio/veterinária , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Animais , Carga Bacteriana , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Ceco/microbiologia , Galinhas/classificação , Galinhas/genética , Genótipo , Reino UnidoRESUMO
The Falkland Islands are predicted to experience up to 2.2°C rise in mean annual temperature over the coming century, greater than four times the rate over the last century. Our study investigates likely vulnerabilities of a suite of range-restricted species whose distributions are associated with archipelago-wide climatic variation. We used present day climate maps calibrated using local weather data, 2020-2080 climate predictions from regional climate models, non-climate variables derived from a digital terrain model and a comprehensive database on local plant distributions. Weighted mean ensemble models were produced to assess changes in range sizes and overlaps between the current range and protected areas network. Target species included three globally threatened Falkland endemics, Nassauvia falklandica, Nastanthus falklandicus and Plantago moorei; and two nationally threatened species, Acaena antarctica and Blechnum cordatum. Our research demonstrates that temperature increases predicted for the next century have the potential to significantly alter plant distributions across the Falklands. Upland species, in particular, were found to be highly vulnerable to climate change impacts. No known locations of target upland species or the southwestern species Plantago moorei are predicted to remain environmentally suitable in the face of predicted climate change. We identify potential refugia for these species and associated gaps in the current protected areas network. Species currently restricted to the milder western parts of the archipelago are broadly predicted to expand their ranges under warmer temperatures. Our results emphasise the importance of implementing suitable adaptation strategies to offset climate change impacts, particularly site management. There is an urgent need for long-term monitoring and artificial warming experiments; the results of this study will inform the selection of the most suitable locations for these. Results are also helping inform management recommendations for the Falkland Islands Government who seek to better conserve their biodiversity and meet commitments to multi-lateral environmental agreements.