Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675751

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Hypocreales/enzimologia , Oxirredução , Polissacarídeos/química , Sordariales/enzimologia
2.
Biotechnol Bioeng ; 114(1): 53-62, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27424518

RESUMO

Cel7A cellobiohydrolases perform processive hydrolysis on one strand of cellulose, which is threaded through the enzyme's substrate binding tunnel. The tunnel structure results from a groove in the catalytic domain, which is covered by a number of loops. These loops have been identified as potential targets for engineering of this industrially important enzyme family, but only few systematic studies on this have been made. Here we show that two asparagine residues (N194 and N197) positioned in the loop covering the glucopyranose subsite -4 (recently denoted B2 loop) of the thermostable Cel7A from Rasamsonia emersonii had profound effects on both substrate interactions and catalytic efficacy. At room temperature the double mutant N194A/N197A showed strongly reduced substrate affinity with a water-cellulose partitioning coefficient threefold lower than the wild type. Yet, this variant was catalytically efficient with a maximal turnover about twice as high as the wild type. Analogous but smaller changes were found for the single mutants. Analysis of these changes in affinity and kinetics as a function of temperature, led to the conclusion that replacement of N194 and particularly N197 with alanine leads to faster enzyme-substrate dissociation. Conversely, these residues appeared to have little or no effect on the rate of association. We suggest that the controlled adjustment of the enzyme-substrate dissociation prompts faster cellulolytic enzymes. Biotechnol. Bioeng. 2017;114: 53-62. © 2016 Wiley Periodicals, Inc.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Eurotiales/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Engenharia de Proteínas/métodos , Celulose/análise , Celulose 1,4-beta-Celobiosidase/química , Eurotiales/genética , Proteínas Fúngicas/química , Cinética , Modelos Moleculares , Temperatura
3.
Acta Crystallogr D Struct Biol ; 72(Pt 2): 254-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26894673

RESUMO

The industrial conversion of cellulosic plant biomass into useful products such as biofuels is a major societal goal. These technologies harness diverse plant degrading enzymes, classical exo- and endo-acting cellulases and, increasingly, cellulose-active lytic polysaccharide monooxygenases, to deconstruct the recalcitrant ß-D-linked polysaccharide. A major drawback with this process is that the exo-acting cellobiohydrolases suffer from severe inhibition from their cellobiose product. ß-D-Glucosidases are therefore important for liberating glucose from cellobiose and thereby relieving limiting product inhibition. Here, the three-dimensional structures of two industrially important family GH3 ß-D-glucosidases from Aspergillus fumigatus and A. oryzae, solved by molecular replacement and refined at 1.95 Šresolution, are reported. Both enzymes, which share 78% sequence identity, display a three-domain structure with the catalytic domain at the interface, as originally shown for barley ß-D-glucan exohydrolase, the first three-dimensional structure solved from glycoside hydrolase family GH3. Both enzymes show extensive N-glycosylation, with only a few external sites being truncated to a single GlcNAc molecule. Those glycans N-linked to the core of the structure are identified purely as high-mannose trees, and establish multiple hydrogen bonds between their sugar components and adjacent protein side chains. The extensive glycans pose special problems for crystallographic refinement, and new techniques and protocols were developed especially for this work. These protocols ensured that all of the D-pyranosides in the glycosylation trees were modelled in the preferred minimum-energy (4)C1 chair conformation and should be of general application to refinements of other crystal structures containing O- or N-glycosylation. The Aspergillus GH3 structures, in light of other recent three-dimensional structures, provide insight into fungal ß-D-glucosidases and provide a platform on which to inform and inspire new generations of variant enzymes for industrial application.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/química , beta-Glucosidase/química , Sequência de Aminoácidos , Configuração de Carboidratos , Sequência de Carboidratos , Domínio Catalítico , Celulose/química , Cristalografia por Raios X , Glicoproteínas/química , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA