Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208205

RESUMO

Proteins need to selectively interact with specific targets among a multitude of similar molecules in the cell. However, despite a firm physical understanding of binding interactions, we lack a general theory of how proteins evolve high specificity. Here, we present such a model that combines chemistry, mechanics, and genetics and explains how their interplay governs the evolution of specific protein-ligand interactions. The model shows that there are many routes to achieving molecular discrimination-by varying degrees of flexibility and shape/chemistry complementarity-but the key ingredient is precision. Harder discrimination tasks require more collective and precise coaction of structure, forces, and movements. Proteins can achieve this through correlated mutations extending far from a binding site, which fine-tune the localized interaction with the ligand. Thus, the solution of more complicated tasks is enabled by increasing the protein size, and proteins become more evolvable and robust when they are larger than the bare minimum required for discrimination. The model makes testable, specific predictions about the role of flexibility and shape mismatch in discrimination, and how evolution can independently tune affinity and specificity. Thus, the proposed theory of specific binding addresses the natural question of "why are proteins so big?". A possible answer is that molecular discrimination is often a hard task best performed by adding more layers to the protein.


Assuntos
Modelos Químicos , Proteínas , Ligantes , Proteínas/genética , Proteínas/química , Sítios de Ligação , Ligação Proteica
2.
Phys Rev Lett ; 131(21): 218401, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38072605

RESUMO

AlphaFold2 (AF) is a promising tool, but is it accurate enough to predict single mutation effects? Here, we report that the localized structural deformation between protein pairs differing by only 1-3 mutations-as measured by the effective strain-is correlated across 3901 experimental and AF-predicted structures. Furthermore, analysis of ∼11 000 proteins shows that the local structural change correlates with various phenotypic changes. These findings suggest that AF can predict the range and magnitude of single-mutation effects on average, and we propose a method to improve precision of AF predictions and to indicate when predictions are unreliable.


Assuntos
Mutação , Proteínas , Software , Proteínas/genética
3.
Biophys J ; 120(24): 5466-5477, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34813729

RESUMO

Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and ß strands at the N terminus. Furthermore, this α-ß asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the "slowest-first" scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Bases de Dados de Proteínas , Estrutura Secundária de Proteína , Proteínas/química
4.
Soft Matter ; 13(10): 2085-2098, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28225134

RESUMO

We investigate the phase behaviour and self-assembly of convex spherical caps using Monte Carlo simulations. This model is used to represent the main features observed in experimental colloidal particles with mushroom-cap shape [Riley et al., Langmuir, 2010, 26, 1648]. The geometry of this non-centrosymmetric convex model is fully characterized by the aspect ratio χ* defined as the spherical cap height to diameter ratio. We use NPT Monte Carlo simulations combined with free energy calculations to determine the most stable crystal structures and the phase behaviour of convex spherical caps with different aspect ratios. We find a variety of crystal structures at each aspect ratio, including plastic and dimer-based crystals; small differences in chemical potential between the structures with similar morphology suggest that convex spherical caps have the tendency to form polycrystalline phases rather than crystallising into a single uniform structure. With the exception of plastic crystals observed at large aspect ratios (χ* > 0.75), crystallisation kinetics seem to be too slow, hindering the spontaneous formation of ordered structures. As an alternative, we also present a study of directing the self-assembly of convex spherical caps via sedimentation onto solid substrates. This study contributes to show how small changes to particle shape can significantly alter the self-assembly of crystal structures, and how a simple gravity field and a template can substantially enhance the process.

5.
Sci Adv ; 10(20): eadm9797, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748798

RESUMO

Both music and language are found in all known human societies, yet no studies have compared similarities and differences between song, speech, and instrumental music on a global scale. In this Registered Report, we analyzed two global datasets: (i) 300 annotated audio recordings representing matched sets of traditional songs, recited lyrics, conversational speech, and instrumental melodies from our 75 coauthors speaking 55 languages; and (ii) 418 previously published adult-directed song and speech recordings from 209 individuals speaking 16 languages. Of our six preregistered predictions, five were strongly supported: Relative to speech, songs use (i) higher pitch, (ii) slower temporal rate, and (iii) more stable pitches, while both songs and speech used similar (iv) pitch interval size and (v) timbral brightness. Exploratory analyses suggest that features vary along a "musi-linguistic" continuum when including instrumental melodies and recited lyrics. Our study provides strong empirical evidence of cross-cultural regularities in music and speech.


Assuntos
Idioma , Música , Fala , Humanos , Fala/fisiologia , Masculino , Percepção da Altura Sonora/fisiologia , Feminino , Adulto , Publicação Pré-Registro
6.
PLoS One ; 18(12): e0284851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091315

RESUMO

Scales, sets of discrete pitches that form the basis of melodies, are thought to be one of the most universal hallmarks of music. But we know relatively little about cross-cultural diversity of scales or how they evolved. To remedy this, we assemble a cross-cultural database (Database of Musical Scales: DaMuSc) of scale data, collected over the past century by various ethnomusicologists. Statistical analyses of the data highlight that certain intervals (e.g., the octave, fifth, second) are used frequently across cultures. Despite some diversity among scales, it is the similarities across societies which are most striking: step intervals are restricted to 100-400 cents; most scales are found close to equidistant 5- and 7-note scales. We discuss potential mechanisms of variation and selection in the evolution of scales, and how the assembled data may be used to examine the root causes of convergent evolution.


Assuntos
Música , Comparação Transcultural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA