Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(1): 163-178.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28844694

RESUMO

Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation. This process is a neomorphic property of EWS-FLI1 compared to wild-type FLI1 and depends on tyrosine residues that are necessary for phase transitions of the EWSR1 prion-like domain. Furthermore, fusion of short fragments of EWSR1 to FLI1 is sufficient to recapitulate BAF complex retargeting and EWS-FLI1 activities. Our studies thus demonstrate that the physical properties of prion-like domains can retarget critical chromatin regulatory complexes to establish and maintain oncogenic gene expression programs.


Assuntos
Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Repetições de Microssatélites , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Priônicas/metabolismo , Domínios Proteicos , Sarcoma de Ewing/patologia
2.
Mol Cell ; 71(4): 554-566.e7, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30078722

RESUMO

Chromosomal rearrangements resulting in the fusion of TMPRSS2, an androgen-regulated gene, and the ETS family transcription factor ERG occur in over half of prostate cancers. However, the mechanism by which ERG promotes oncogenic gene expression and proliferation remains incompletely understood. Here, we identify a binding interaction between ERG and the mammalian SWI/SNF (BAF) ATP-dependent chromatin remodeling complex, which is conserved among other oncogenic ETS factors, including ETV1, ETV4, and ETV5. We find that ERG drives genome-wide retargeting of BAF complexes in a manner dependent on binding of ERG to the ETS DNA motif. Moreover, ERG requires intact BAF complexes for chromatin occupancy and BAF complex ATPase activity for target gene regulation. In a prostate organoid model, BAF complexes are required for ERG-mediated basal-to-luminal transition, a hallmark of ERG activity in prostate cancer. These observations suggest a fundamental interdependence between ETS transcription factors and BAF chromatin remodeling complexes in cancer.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Serina Endopeptidases/genética , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Organoides/metabolismo , Organoides/patologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets , Serina Endopeptidases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L428-L444, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604625

RESUMO

Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.


Assuntos
Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Hipertensão Pulmonar Primária Familiar/metabolismo , Feminino , Hipertensão Pulmonar/genética , Músculo Liso Vascular/metabolismo , Monoéster Fosfórico Hidrolases/genética , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Remodelação Vascular
4.
J Org Chem ; 84(21): 13948-13956, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603683

RESUMO

A large set of organic compounds extracted from the CAS Registry is analyzed to study recent changes in structural diversity. The diversity is characterized using the framework content of the compounds; the framework of a molecule is the scaffold consisting of all its ring systems and all the chain fragments connecting them. The compounds are partitioned based on their year of first report in the literature, which allows framework occurrence frequencies to be compared across a 10-year interval. The results are consistent with a process in which frameworks with the greatest frequency of use in the past are the most likely to be used again, but it is also found that the frequency ordering changes over time. These fluctuations in ordering are attributed to stochastic factors, scientific and economic, that can affect how chemical space is explored. Framework diversity is found to have increased over time despite the extensive reuse of a relatively small number of frameworks; this increase is due to the large number of new frameworks. The long tail of the framework distribution, composed of frameworks that occur in few compounds or only one compound, is found to be a large and growing part of framework space.

5.
J Pathol ; 244(5): 638-649, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29359803

RESUMO

Soft-tissue sarcomas are increasingly characterized and subclassified by genetic abnormalities that represent underlying drivers of their pathology. Hallmark tumor suppressor gene mutations and pathognomonic gene fusions collectively account for approximately one-third of all sarcomas. These genetic abnormalities most often result in global transcriptional misregulation via disruption of protein regulatory complexes which govern chromatin architecture. Specifically, alterations to mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes and polycomb repressive complexes cause disease-specific changes in chromatin architecture and gene expression across a number of sarcoma subtypes. Understanding the functions of chromatin regulatory complexes and the mechanisms underpinning their roles in oncogenesis will be required for the design and development of new therapeutic strategies in sarcomas. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas do Grupo Polycomb/genética , Sarcoma/genética , Neoplasias de Tecidos Moles/genética , Fatores de Transcrição/genética , Animais , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Fenótipo , Proteínas do Grupo Polycomb/metabolismo , Prognóstico , Sarcoma/metabolismo , Sarcoma/patologia , Sarcoma/terapia , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/terapia , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Am J Respir Cell Mol Biol ; 59(3): 334-345, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652520

RESUMO

Although hemolytic anemia-associated pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) are more common than the prevalence of idiopathic PAH alone, the role of hemolysis in the development of PAH is poorly characterized. We hypothesized that hemolysis independently contributes to PAH pathogenesis via endothelial barrier dysfunction with resulting perivascular edema and inflammation. Plasma samples from patients with and without PAH (both confirmed by right heart catheterization) were used to measure free hemoglobin (Hb) and its correlation with PAH severity. A sugen (50 mg/kg)/hypoxia (3 wk)/normoxia (2 wk) rat model was used to elucidate the role of free Hb/heme pathways in PAH. Human lung microvascular endothelial cells were used to study heme-mediated endothelial barrier effects. Our data indicate that patients with PAH have increased levels of free Hb in plasma that correlate with PAH severity. There is also a significant accumulation of free Hb and depletion of haptoglobin in the rat model. In rats, perivascular edema was observed at early time points concomitant with increased infiltration of inflammatory cells. Heme-induced endothelial permeability in human lung microvascular endothelial cells involved activation of the p38/HSP27 pathway. Indeed, the rat model also exhibited increased activation of p38/HSP27 during the initial phase of PH. Surprisingly, despite the increased levels of hemolysis and heme-mediated signaling, there was no heme oxygenase-1 activation. This can be explained by observed destabilization of HIF-1a during the first 2 weeks of PH regardless of hypoxic conditions. Our data suggest that hemolysis may play a significant role in PAH pathobiology.


Assuntos
Hemoglobinas/metabolismo , Hemólise/fisiologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia/complicações , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Remodelação Vascular/fisiologia
7.
J Am Chem Soc ; 140(42): 13594-13598, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351134

RESUMO

The synthesis of thiolactone monomers that mimic natural nucleosides and engage in robust ring opening polymerizations (ROP) is herein described. As each repeat unit contains a thioester functional group, dynamic rearrangement of the polymer is feasible via thiol-thioester exchange, demonstrated here by depolymerization of the polymers and coalescing of two polymers of different molecular weight or chemical composition. This approach constitutes the first step toward a platform that enables for the routine synthesis of sequence controlled polymers via dynamic template directed synthesis.


Assuntos
DNA/química , Lactonas/química , Polimerização , Polímeros/química , Compostos de Sulfidrila/química , DNA/síntese química , Lactonas/síntese química , Modelos Moleculares , Polímeros/síntese química , Compostos de Sulfidrila/síntese química
8.
Soft Matter ; 14(6): 951-960, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29319713

RESUMO

Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

9.
Polymer (Guildf) ; 55(23): 5880-5884, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25378717

RESUMO

The formation of polymer networks polymerized with the Copper (I) - catalyzed azide - alkyne cycloaddition (CuAAC) click reaction is described along with their accompanying utilization as shape memory polymers. Due to the click nature of the reaction and the synthetic accessibility of azide and alkyne functional-monomers, the polymer architecture was readily controlled through monomer design to manipulate crosslink density, ability for further functionalization, and the glass transition temperature (55 to 120°C). Free strain recovery is used to quantify the shape memory properties of a model CuAAC network resulting in excellent shape fixity and recovery of 99%. The step growth nature of this polymerization results in homogenous network formation with narrow glass transitions ranges having half widths of the transition close to 15°C for these materials resulting in shape recovery sharpness of 3.9 %/°C in a model system comparable to similarly crosslinked chain growth polymers. Utilization of the CuAAC reaction to form shape memory materials opens a range of possibilities and behaviors that are not readily achieved in other shape memory materials such as (meth) acrylates, thiolene, thiol-Michael, and poly(caprolactone) based shape memory materials.

10.
Am J Orthod Dentofacial Orthop ; 145(4 Suppl): S92-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24680029

RESUMO

INTRODUCTION: The purpose of this study was to determine how the amount of surgical insult affects the quantity and maturity of dentoalveolar bone around teeth that have been orthodontically moved. METHODS: A split-mouth design with 8 foxhound dogs was used to evaluate bone surrounding maxillary second premolars that were protracted for 15 days and retained for 7 weeks. The maxillary first premolars were extracted, and the interseptal bone was removed to within 1 mm of the second premolars; on the insult (lesser surgical insult) side, buccal and lingual vertical grooves were made in the extraction socket to undermine the mesial root of the second premolar; the insult+ (greater surgical insult) side was flapped and had modified corticotomies extending to, but not through, the lingual cortex 1 mm distal to the distal root, and 3 to 5 mm apical to both roots. Microcomputed tomography analyses were used to evaluate the material density, bone volume fraction, and trabecular characteristics of surrounding bone. Hematoxylin and eosin sections were used to determine osteoclast numbers, bone surface areas, and bone volumes. RESULTS: After 7 weeks of consolidation, there was significantly (P <0.05) less bone on the insult+ side; it was less dense and less mature than the bone on the insult side. Relative to the control bone, bone on the insult+ side was significantly less dense but showed no differences in bone volume. Preliminary histologic evaluations indicated increased numbers of osteoclasts and greater bone surface areas on the insult+ side than the insult side, but no differences in bone volume. CONCLUSIONS: Increased surgical insults produce less dense and less mature bone but have no effect on bone volume at 9 weeks after surgery.


Assuntos
Processo Alveolar/citologia , Densidade Óssea/fisiologia , Maxila/cirurgia , Osteoclastos/fisiologia , Técnicas de Movimentação Dentária/efeitos adversos , Raiz Dentária/fisiologia , Animais , Cães , Masculino , Maxila/fisiologia , Estatísticas não Paramétricas , Técnicas de Movimentação Dentária/instrumentação , Técnicas de Movimentação Dentária/métodos , Microtomografia por Raio-X
11.
Metabolites ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668312

RESUMO

Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion monitoring (SIM) as a means of sensitivity enhancement. The analytes of interest are enriched in the orbitrap analyzer by using the quadrupole as a mass filter to select particular ions. In tissue extracts, SIM significantly enhances the detection of ions of low intensity, as indicated by improved signal-to-noise (S/N) ratios and measurement precision. In addition, SIM improves the accuracy of isotope-ratio measurements. SIM, however, must be deployed with care, as excessive accumulation in the orbitrap of similar m/z ions can lead, via space-charge effects, to decreased performance (signal loss, mass shift, and ion coalescence). Ion accumulation can be controlled by adjusting settings including injection time and target ion quantity. Overall, we suggest using a full scan to ensure broad metabolic coverage, in tandem with SIM, for the accurate quantitation of targeted low-intensity ions, and provide methods deploying this approach to enhance metabolome coverage.

12.
Cell Metab ; 36(1): 103-115.e4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171330

RESUMO

The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Using rodent models, here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable-isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered, but SHMT2- and serine-dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis is largely insensitive to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 a major glycine-consuming enzyme.


Assuntos
Glicina Hidroximetiltransferase , Glicina , Glicina Hidroximetiltransferase/genética , Homeostase , Carbono , Serina
13.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260457

RESUMO

Neuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells1,2. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis3,4. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity5. Here we show that such inhibition can be augmented by dietary restriction of upstream amino acid substrates, leading to disruption of oncogenic protein translation, tumor differentiation, and profound survival gains in the TH-MYCN mouse model. Specifically, an arginine/proline-free diet decreases the polyamine precursor ornithine and augments tumor polyamine depletion by difluoromethylornithine. This polyamine depletion causes ribosome stalling, unexpectedly specifically at adenosine-ending codons. Such codons are selectively enriched in cell cycle genes and low in neuronal differentiation genes. Thus, impaired translation of these codons, induced by the diet-drug combination, favors a pro-differentiation proteome. These results suggest that the genes of specific cellular programs have evolved hallmark codon usage preferences that enable coherent translational rewiring in response to metabolic stresses, and that this process can be targeted to activate differentiation of pediatric cancers.

14.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711816

RESUMO

The folate-dependent enzyme serine hydroxymethyltransferase (SHMT) reversibly converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Such one-carbon unit production plays a critical role in development, the immune system, and cancer. Here we show that the whole-body SHMT flux acts to net consume rather than produce glycine. Pharmacological inhibition of whole-body SHMT1/2 and genetic knockout of liver SHMT2 elevated circulating glycine levels up to eight-fold. Stable isotope tracing revealed that the liver converts glycine to serine, which is then converted by serine dehydratase into pyruvate and burned in the tricarboxylic acid cycle. In response to diets deficient in serine and glycine, de novo biosynthetic flux was unaltered but SHMT2- and serine dehydratase-mediated catabolic flux was lower. Thus, glucose-derived serine synthesis does not respond to systemic demand. Instead, circulating serine and glycine homeostasis is maintained through variable consumption, with liver SHMT2 as a major glycine-consuming enzyme.

15.
ACS Appl Mater Interfaces ; 15(25): 30956-30963, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315182

RESUMO

Electroadhesion is the modulation of adhesive forces through electrostatic interactions and has potential applications in a number of next-generation technologies. Recent efforts have focused on using electroadhesion in soft robotics, haptics, and biointerfaces that often involve compliant materials and nonplanar geometries. Current models for electroadhesion provide limited insight on other contributions that are known to influence adhesion performance, such as geometry and material properties. This study presents a fracture mechanics framework for understanding electroadhesion that incorporates geometric and electrostatic contributions for soft electroadhesives. We demonstrate the validity of this model with two material systems that exhibit disparate electroadhesive mechanisms, indicating that this formalism is applicable to a variety of electroadhesives. The results show the importance of material compliance and geometric confinement in enhancing electroadhesive performance and providing structure-property relationships for designing electroadhesive devices.

16.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941345

RESUMO

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Assuntos
Comportamento Social , Suor , Abelhas , Animais , Reprodução , Fenótipo
17.
Polymer (Guildf) ; 53(12): 2429-2434, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22798700

RESUMO

In this study, we develop thiol/acrylate two-stage reactive network forming polymer systems that exhibit two distinct and orthogonal stages of curing. Using a thiol-acrylate system with excess acrylate functional groups, a first stage polymer network is formed via a 1 to 1 stoichiometric thiol-acrylate Michael addition reaction (stage 1). At a later point in time, the excess acrylate functional groups are homopolymerized via a photoinitiated free radical polymerization to form a second stage polymer network (stage 2). By varying the monomers within the system as well as the stoichiometery of the thiol to acrylate functional groups, we demonstrate the ability of the two-stage polymer network forming systems to encompass a wide range of properties at the end of both the stage 1 and stage 2 polymerizations. Using urethane di- and hexa-acrylates within the formulations led to two-stage reactive polymeric systems with stage 1 T(g)s that ranged from -12 to 30 °C. The systems were then photocured, upon which the T(g) of the systems increases by up to 90 °C while also achieving a nearly 20 fold modulus increase.

18.
Pain ; 163(5): e642-e653, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34629389

RESUMO

ABSTRACT: Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.


Assuntos
Cálcio , Prurido , Animais , Cálcio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Interleucinas/efeitos adversos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos , Dor/metabolismo , Prurido/metabolismo
19.
Med ; 3(2): 119-136, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35425930

RESUMO

Background: Ketogenic diet is a potential means of augmenting cancer therapy. Here, we explore ketone body metabolism and its interplay with chemotherapy in pancreatic cancer. Methods: Metabolism and therapeutic responses of murine pancreatic cancer were studied using KPC primary tumors and tumor chunk allografts. Mice on standard high-carbohydrate diet or ketogenic diet were treated with cytotoxic chemotherapy (nab-paclitaxel, gemcitabine, cisplatin). Metabolic activity was monitored with metabolomics and isotope tracing, including 2H- and 13C-tracers, liquid chromatography-mass spectrometry, and imaging mass spectrometry. Findings: Ketone bodies are unidirectionally oxidized to make NADH. This stands in contrast to the carbohydrate-derived carboxylic acids lactate and pyruvate, which rapidly interconvert, buffering NADH/NAD. In murine pancreatic tumors, ketogenic diet decreases glucose's concentration and tricarboxylic acid cycle contribution, enhances 3-hydroxybutyrate's concentration and tricarboxylic acid contribution, and modestly elevates NADH, but does not impact tumor growth. In contrast, the combination of ketogenic diet and cytotoxic chemotherapy substantially raises tumor NADH and synergistically suppresses tumor growth, tripling the survival benefits of chemotherapy alone. Chemotherapy and ketogenic diet also synergize in immune-deficient mice, although long-term growth suppression was only observed in mice with an intact immune system. Conclusions: Ketogenic diet sensitizes murine pancreatic cancer tumors to cytotoxic chemotherapy. Based on these data, we have initiated a randomized clinical trial of chemotherapy with standard versus ketogenic diet for patients with metastatic pancreatic cancer (NCT04631445).


Assuntos
Dieta Cetogênica , Neoplasias Pancreáticas , Animais , Carboidratos , Dieta Cetogênica/métodos , Humanos , Camundongos , NAD , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Pancreáticas
20.
Med ; 2(6): 736-754, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34223403

RESUMO

BACKGROUND: Upregulated glucose metabolism is a common feature of tumors. Glucose can be broken down by either glycolysis or the oxidative pentose phosphate pathway (oxPPP). The relative usage within tumors of these catabolic pathways remains unclear. Similarly, the extent to which tumors make biomass precursors from glucose, versus take them up from the circulation, is incompletely defined. METHODS: We explore human triple negative breast cancer (TNBC) metabolism by isotope tracing with [1,2-13C]glucose, a tracer that differentiates glycolytic versus oxPPP catabolism and reveals glucose-driven anabolism. Patients enrolled in clinical trial NCT03457779 and received IV infusion of [1,2-13C]glucose during core biopsy of their primary TNBC. Tumor samples were analyzed for metabolite labeling by liquid chromatography-mass spectrometry (LC-MS). Genomic and proteomic analyses were performed and related to observed metabolic fluxes. FINDINGS: TNBC ferments glucose to lactate, with glycolysis dominant over the oxPPP. Most ribose phosphate is nevertheless produced by oxPPP. Glucose also feeds amino acid synthesis, including of serine, glycine, aspartate, glutamate, proline and glutamine (but not asparagine). Downstream in glycolysis, tumor pyruvate and lactate labeling exceeds that found in serum, indicating that lactate exchange via monocarboxylic transporters is less prevalent in human TNBC compared with most normal tissues or non-small cell lung cancer. CONCLUSIONS: Glucose directly feeds ribose phosphate, amino acid synthesis, lactate, and the TCA cycle locally within human breast tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Aminoácidos , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Proteômica , Ribosemonofosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA