Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401478, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001626

RESUMO

Myocardial infarctions locally deprive myocardium of oxygenated blood and cause immediate cardiac myocyte necrosis. Irreparable myocardium is then replaced with a scar through a dynamic repair process that is an interplay between hypoxic cells of the infarct zone and normoxic cells of adjacent healthy myocardium. In many cases, unresolved inflammation or fibrosis occurs for reasons that are incompletely understood, increasing the risk of heart failure. Crosstalk between hypoxic and normoxic cardiac cells is hypothesized to regulate mechanisms of repair after a myocardial infarction. To test this hypothesis, microfluidic devices are fabricated on 3D printed templates for co-culturing hypoxic and normoxic cardiac cells. This system demonstrates that hypoxia drives human cardiac fibroblasts toward glycolysis and a pro-fibrotic phenotype, similar to the anti-inflammatory phase of wound healing. Co-culture with normoxic fibroblasts uniquely upregulates pro-inflammatory signaling in hypoxic fibroblasts, including increased secretion of tumor necrosis factor alpha (TNF-α). In co-culture with hypoxic fibroblasts, normoxic human induced pluripotent stem cell (hiPSC)-derived cardiac myocytes also increase pro-inflammatory signaling, including upregulation of interleukin 6 (IL-6) family signaling pathway and increased expression of IL-6 receptor. Together, these data suggest that crosstalk between hypoxic fibroblasts and normoxic cardiac cells uniquely activates phenotypes that resemble the initial pro-inflammatory phase of post-infarct wound healing.

2.
Nat Commun ; 15(1): 5891, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003263

RESUMO

Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.


Assuntos
Diferenciação Celular , Receptores Notch , Transdução de Sinais , Engenharia Tecidual , Receptores Notch/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Camundongos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Ligantes , Alicerces Teciduais/química , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Células HEK293
3.
Curr Res Physiol ; 6: 100108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107790

RESUMO

The uterus is susceptible to benign tumors known as fibroids, which have been associated with many pregnancy complications, including preterm labor. However, the impact of fibrotic tissue remodeling on the physiology of the myometrium, the smooth muscle layer of the uterus, is poorly understood, in large part due to a lack of model systems. In this study, we engineered healthy-like and fibrotic-like myometrium by culturing human myometrial smooth muscle cells on polyacrylamide hydrogels micropatterned with fibronectin to independently tune matrix rigidity and tissue alignment, respectively. We then evaluated calcium transients in response to oxytocin stimulation. Isotropic myometrial tissues on stiff substrates (representing fibrotic myometrium) had shorter calcium transients due to shorter decay time compared to aligned myometrial tissues on soft substrates (representing healthy myometrium). Calcium transients in aligned tissues had longer response times and longer decay times than isotropic tissues, irrespective of substrate stiffness. The amplitude of calcium transients was also higher on soft substrates compared to stiff substrates, irrespective of tissue alignment. We also performed RNA sequencing to detect differentially expressed genes between healthy- and fibrotic-like tissues, which revealed that a bitter taste receptor shown to induce smooth muscle relaxation, TAS2R31, was down-regulated in fibrotic-like tissues. Finally, we measured oxytocin-induced calcium transients in response to pre-treatment with progesterone, caffeine, thrombin, and nifedipine to demonstrate applications for our model system in drug screening. Both progesterone and caffeine caused a decrease in calcium transient duration, as expected, while thrombin and nifedipine had less impact. Collectively, our engineered model of the myometrium enables new insights into myometrial mechanobiology and can be extended to identify or screen novel drug targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA