Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 82(3): 317-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34985546

RESUMO

The Salinas Valley in Monterey County, California, USA, is a highly productive agricultural region. Irrigation runoff containing pesticides at concentrations toxic to aquatic organisms poses a threat to aquatic ecosystems within local watersheds. This study monitored the effectiveness of a constructed wetland treatment system with a granulated activated carbon (GAC) filter installation at reducing pesticide concentrations and associated toxicity to Ceriodaphnia dubia, Hyalella azteca, and Chironomus dilutus. The wetland was supplied with water pumped from an impaired agricultural and urban drainage. Across five monitoring trials, the integrated system's average pesticide concentration reduction was 52%. The wetland channel and GAC filtration components individually provided significant treatment, and within each, pesticide solubility had a significant effect on changes in pesticide concentrations. The integrated treatment system also reduced nitrate by 61%, phosphate by 73%, and turbidity by 90%. Input water was significantly toxic to C. dubia and H. azteca in the first trial. Toxicity to C. dubia persisted throughout the system, whereas toxicity to H. azteca was removed by the channel, but there was residual toxicity post-GAC. The final trial had significant input toxicity to H. azteca and C. dilutus. The channel reduced toxicity to H. azteca and removed toxicity to C. dilutus. GAC filtration reduced H. azteca toxicity to an insignificant level. There was no input toxicity in the other three trials. The results demonstrate that a wetland treatment system coupled with GAC filtration can reduce pesticide concentrations, nutrients, suspended particles, and aquatic toxicity associated with agricultural runoff.


Assuntos
Anfípodes , Praguicidas , Poluentes Químicos da Água , Animais , Ecossistema , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Áreas Alagadas
2.
Bull Environ Contam Toxicol ; 108(5): 884-889, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34874464

RESUMO

Organism tolerance thresholds for emerging contaminants are vital to the development of water quality criteria. Acute (96-h) and chronic (10-day) effects thresholds for neonicotinoid pesticides clothianidin and thiamethoxam, and the carbamate pesticide methomyl were developed for the midge Chironomus dilutus to support criteria development using the UC Davis Method. Median lethal concentrations (LC50s) were calculated for acute and chronic exposures, and the 25% inhibition concentrations (IC25) were calculated for the chronic exposures based on confirmed chemical concentrations. Clothianidin effect concentrations were 4.89 µg/L, 2.11 µg/L and 1.15 µg/L for 96-h LC50, 10-day LC50 and 10-day IC25, respectively. Similarly, thiamethoxam concentrations were 56.4 µg/L, 32.3 µg/L and 19.6 µg/L, and methomyl concentrations were 244 µg/L, 266 µg/L and 92.1 µg/L. Neonicotinoid effect concentrations compared favorably to previously published 96-h and 14-day LC50 concentrations, and methomyl effect concentrations were within the acute survival range reported for Chironomus species and other organisms.


Assuntos
Chironomidae , Inseticidas , Poluentes Químicos da Água , Animais , Guanidinas/toxicidade , Inseticidas/toxicidade , Metomil , Neonicotinoides/toxicidade , Nitrocompostos , Tiametoxam/toxicidade , Tiazóis , Poluentes Químicos da Água/análise
3.
Toxics ; 9(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435272

RESUMO

Pyrethroid and neonicotinoid pesticides control an array of insect pests in leafy greens, but there are concerns about the off-site movement and potential water quality impacts of these chemicals. Effective on-farm management practices can eliminate aquatic toxicity and pesticides in runoff. This project evaluated an integrated vegetated treatment system (VTS), including the use of polyacrylamide (PAM), for minimizing the toxicity of imidacloprid and permethrin pesticides in runoff. The VTS incorporated a sediment trap to remove coarse particles, a grass-lined ditch with compost swales to remove suspended sediment and insecticides, and granulated activated carbon (GAC) or biochar to remove residual insecticides. Runoff was sampled throughout the VTS and analyzed for pesticide concentrations, and aquatic toxicity using the midge Chironomus dilutus and the amphipod Hyalella azteca. In simulated runoff experiments, the VTS reduced suspended sediment load by 88%, and imidacloprid and permethrin load by 97% and 99%, respectively. In runoff events from a conventionally grown lettuce field, suspended sediment load was reduced by 98%, and insecticide load by 99%. Toxicity was significantly reduced in approximately half of the simulated runoff events, and most of the lettuce runoff events. Integrated vegetated treatment systems that include components for treating soluble and hydrophobic pesticides are vital tools for reducing pesticide load and occurrence of pesticide-related toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA