Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Neurosci ; 27(1): 87-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36583502

RESUMO

Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.


Assuntos
Grelina , Leptina , Grelina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Apetite , Ingestão de Energia , Peptídeo 1 Semelhante ao Glucagon , Peptídeo YY , Metabolismo Energético , Tirosina/metabolismo , Tirosina/farmacologia
2.
Appetite ; 196: 107286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417533

RESUMO

Research on exercise-induced appetite suppression often does not include resistance training (RT) exercise and only compared matched volumes. PURPOSE: To compare the effects of low-load and high-load RT exercise completed to volitional fatigue on appetite-regulation. METHODS: 11 resistance-trained males (24 ± 2 y) completed 3 sessions in a crossover experimental design: 1) control (CTRL); 2) RT exercise at 30% 1-repetition maximum (RM); and 3) RT exercise at 90% 1-RM. RT sessions consisted of 3 sets of 5 exercises completed to volitional fatigue. Acylated ghrelin, active glucagon-like peptide-1 (GLP-1), active peptide tyrosine (PYY), lactate, and subjective appetite perceptions were measured pre-exercise, 0-, 60-, and 120-min post-exercise. Energy intake was recorded the day before, of, and after each session. RESULTS: Lactate was elevated following both 30% (0-, 60-, 120-min post-exercise) and 90% (0-, 60-min post-exercise; P < 0.001, d > 3.92) versus CTRL, with 30% greater than 90% (0-min post-exercise; P = 0.011, d = 1.14). Acylated ghrelin was suppressed by 30% (P < 0.007, d > 1.22) and 90% (P < 0.028, d > 0.096) post-exercise versus CTRL, and 30% suppressed concentrations versus 90% (60-min post-exercise; P = 0.032, d = 0.95). There was no effect on PYY (P > 0.171, ηp2 <0.149) though GLP-1 was greater at 60-min post-exercise in 90% (P = 0.052, d = 0.86) versus CTRL. Overall appetite was suppressed 0-min post-exercise following 30% and 90% versus CTRL (P < 0.013, d > 1.10) with no other differences (P > 0.279, d < 0.56). There were no differences in energy intake (P > 0.101, ηp2 <0.319). CONCLUSIONS: RT at low- and high-loads to volitional fatigue induced appetite suppression coinciding with changes in acylated ghrelin though limited effects on anorexigenic hormones or free-living energy intake were present.


Assuntos
Apetite , Treinamento Resistido , Masculino , Humanos , Apetite/fisiologia , Grelina , Peptídeo YY , Regulação do Apetite/fisiologia , Peptídeo 1 Semelhante ao Glucagon , Ingestão de Energia/fisiologia , Ácido Láctico
3.
Appetite ; 198: 107362, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636667

RESUMO

This was a preliminary study that examined whether appetite regulation is altered during the menstrual cycle or with oral contraceptives. Ten naturally cycling females (NON-USERS) and nine tri-phasic oral contraceptive using females (USERS) completed experimental sessions during each menstrual phase (follicular phase: FP; ovulatory phase: OP; luteal phase: LP). Appetite perceptions and blood samples were obtained fasted, 30, 60, and 90 min post-prandial to measure acylated ghrelin, active glucagon-like peptide-1 (GLP-1), and total peptide tyrosine tyrosine (PYY). Changes were considered important if p < 0.100 and the effect size was ≥medium. There appeared to be a three-way (group x phase x time) interaction for acylated ghrelin where concentrations appeared to be greater in USERS versus NON-USERS during the OP 90-min post-prandial and during the LP fasted, and 90-min post-prandial. In USERS, ghrelin appeared to be greater 90-min post-prandial in the OP versus the FP with no other apparent differences between phases. There were no apparent differences between phases in NON-USERS. There appeared to be a three-way interaction for PYY where concentrations appeared to be greater in USERS during the FP 60-min post-prandial and during the OP 30-min post-prandial. In USERS PYY appeared to be greater 60-min post-prandial during the OP versus the LP with no other apparent differences. There were no apparent differences between phases in NON-USERS. There appeared to be no effect of group or phase on GLP-1, or appetite perceptions. These data demonstrate small effects of menstrual cycle phase and oral contraceptive use on the acylated ghrelin and total PYY response to a standardized meal, with no effects on active GLP-1 or perceived appetite, though more work with a large sample size is necessary.


Assuntos
Grelina , Peptídeo 1 Semelhante ao Glucagon , Ciclo Menstrual , Peptídeo YY , Período Pós-Prandial , Humanos , Feminino , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo YY/sangue , Adulto Jovem , Adulto , Anticoncepcionais Orais/administração & dosagem , Anticoncepcionais Orais/farmacologia , Apetite , Regulação do Apetite/fisiologia , Adolescente , Jejum , Acilação
4.
J Strength Cond Res ; 38(8): 1386-1393, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775793

RESUMO

ABSTRACT: Grisebach, D, Bornath, DPD, McCarthy, SF, Jarosz, C, and Hazell, TJ. Low-load and high-load resistance exercise completed to volitional fatigue induce increases in post-exercise metabolic responses with more prolonged responses with the low-load protocol. J Strength Cond Res 38(8): 1386-1393, 2024-Comparisons of high-load with low-load resistance training (RT) exercise have demonstrated no differences in postexercise metabolism when volume is matched. This important limitation of matching or equating volume diminishes benefits of the low-load RT protocol. Therefore, the purpose of this study was to determine the effects of acute low-load high volume and high-load low volume RT protocols completed to volitional fatigue on postexercise metabolism. Eleven recreationally active resistance-trained male subjects (24 ± 2 years; BMI: 25.3 ± 1.5 kg·m -2 ) completed 3 experimental sessions: (a) no-exercise control (CTRL); (b) RT at 30% 1 repetition maximum (1RM; 30% 1RM); and (c) RT at 90% 1RM (90% 1RM) with oxygen consumption (V̇ o2 ) measurements 2 hours postexercise. The RT sessions consisted of 3 sets of back squats, bench press, straight-leg deadlift, military press, and bent-over rows to volitional fatigue completed sequentially with 90 seconds of rest between sets and exercises. Changes were considered important if p < 0.100 with a ≥medium effect size. V̇ o2 1 hour postexercise was elevated following 30% 1RM (25%; p = 0.003, d = 1.40) and 90% 1RM (14%; p = 0.010, d = 1.15) vs. CTRL and remained elevated 2 hours postexercise following 30% 1RM (16%; p = 0.010, d = 1.15) vs. CTRL. Total O 2 consumed postexercise increased following 30% 1RM and 90% 1RM (∼17%; p < 0.044, d > 0.91) vs. CTRL. Fat oxidation was elevated 1 hour postexercise following 30% 1RM and 90% 1RM (∼155%; p < 0.001, d > 2.97) and remained elevated 2 hours postexercise following 30% 1RM compared with CTRL and 90% 1RM (∼69%; p < 0.030, d > 1.03). These data demonstrate beneficial changes to postexercise metabolism following high- and low-load RT sessions, with more prolonged effects following the low-load RT protocol completed to volitional fatigue.


Assuntos
Fadiga Muscular , Consumo de Oxigênio , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Masculino , Fadiga Muscular/fisiologia , Adulto Jovem , Adulto , Consumo de Oxigênio/fisiologia , Ácido Láctico/sangue
6.
Nutr Rev ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008822

RESUMO

CONTEXT: Energy intake may differ across the menstrual cycle, with some studies identifying greater energy intake in the luteal phase (LP) compared with the follicular phase (FP) and others finding no clear differences. To date, no study has systematically synthesized the available data to draw more definite conclusions while considering any methodological inconsistencies between studies. OBJECTIVE: The aim was to conduct a systematic review/meta-analysis in an effort to determine if there are differences in energy intake between the FP and LP. DATA SOURCES: A systematic search strategy was developed and the search was conducted in 5 databases for studies that investigated any changes in energy intake across menstrual phases. DATA EXTRACTION: Using Covidence, studies were identified and included if they contained individuals between the ages of 18 and 45 years, maintained an average body mass index (BMI) of 18.5-25 kg/m2, had no history of disordered eating, and included energy intake and menstrual cycle measurements in the FP and LP. DATA ANALYSIS: Effect sizes were calculated for each study and a random-effects model was used to pool the results of each study. RESULTS: Fifteen datasets were included consisting of 330 female participants with a mean age of 26 ± 4 years and mean BMI of 22.4 ± 2.3 kg/m2. Overall, there was a statistically significant difference (standardized mean difference = 0.69; P = .039) with increased energy intake in the LP compared with the FP (crude 168 kcal⋅d-1 average difference between phases). CONCLUSION: Energy intake was found to be greater in the LP compared with the FP, providing insight into the effect of the menstrual cycle on energy intake. However, there were repeated methodological inconsistencies and future work should strive to utilize best practices for both energy intake measurement and menstrual phase specification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA