Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 28(3): 3280-3288, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122000

RESUMO

We present and characterize a narrow-linewidth external-cavity diode laser at 2 µm, and show that it represents a low-cost, high-performance alternative to fiber lasers for research into 2 µm photonic technologies for next-generation gravitational-wave detectors. A linewidth of 20 kHz for a 10 ms integration time was measured without any active stabilization, with frequency noise of ∼ 15 Hz/Hz between 3 kHz and 100 kHz. This performance is suitable for the generation of quantum squeezed light, and we measure intensity noise comparable to that of master oscillators used in current gravitational wave interferometers. The laser wavelength is tunable over a 120 nm range, and both the frequency and intensity can be modulated at up to 10 MHz by modulating the diode current. These features also make it suitable for other emerging applications in the 2 µm wavelength region including gas sensing, optical communications and LIDAR.

2.
Opt Lett ; 44(21): 5386-5389, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675014

RESUMO

We demonstrate phase control for vacuum-squeezed light at a 2 µm wavelength, which is a necessary technology for proposed future gravitational wave observatories. The control scheme allowed examination of noise behavior at frequencies below 1 kHz and indicated that squeezing below this frequency was limited by dark noise and scattered light. We directly measure 3.9±0.2 dB of squeezing from 2 kHz to 80 kHz and 14.2±0.3 dB of antisqueezing relative to the shot noise level. The observed maximum level of squeezing is currently limited by photodetector quantum efficiency and laser instabilities at this new wavelength for squeezed light. Accounting for all losses, we conclude the generation of 11.3 dB of squeezing at the optical parametric oscillator.

3.
Phys Rev Lett ; 123(23): 231107, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868462

RESUMO

The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).

4.
Opt Express ; 21(16): 19047-60, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938820

RESUMO

Squeezed states of light are an important tool for optical measurements below the shot noise limit and for optical realizations of quantum information systems. Recently, squeezed vacuum states were deployed to enhance the shot noise limited performance of gravitational wave detectors. In most practical implementations of squeezing enhancement, relative fluctuations between the squeezed quadrature angle and the measured quadrature (sometimes called squeezing angle jitter or phase noise) are one limit to the noise reduction that can be achieved. We present calculations of several effects that lead to quadrature fluctuations, and use these estimates to account for the observed quadrature fluctuations in a LIGO gravitational wave detector. We discuss the implications of this work for quantum enhanced advanced detectors and even more sensitive third generation detectors.

5.
Sci Rep ; 7(1): 14546, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109531

RESUMO

Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

6.
Rev Sci Instrum ; 87(6): 063104, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370423

RESUMO

With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

7.
Phys Rev Lett ; 100(1): 010801, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18232749

RESUMO

A series of recent articles have presented results demonstrating optical cooling of macroscopic objects, highlighting the importance of this phenomenon for investigations of macroscopic quantum mechanics and its implications for thermal noise in gravitational wave detectors. In this Letter, we present a measurement of the off-resonance suspension thermal noise of a 1 g oscillator, and we show that it can be cooled to just 70 mK. The cooling is achieved by using a servo to impose a phase delay between oscillator motion and optical force. A model is developed to show how optical rigidity and optical cooling can be interchangeable using this technique.

8.
Phys Rev Lett ; 96(23): 231101, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16803364

RESUMO

In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.

9.
Appl Opt ; 37(34): 7995-8001, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18301690

RESUMO

Sagnac interferometers have recently been proposed as a potential alternative to Michelson interferometers for the purpose of large-scale laser interferometric gravitational-wave detectors. We report on an experimental investigation of the Sagnac interferometer in two configurations: with arm cavities, and with resonant sideband extraction. Resonant sideband extraction was shown to increase the signal bandwidth by a factor of 6.5 compared with the arm cavity device, corresponding to an increase in sensitivity of as much as 6 dB for signals outside the arm cavity bandwidth. Moreover, we compare the performance of a Sagnac interferometer with resonant sideband extraction to a Michelson interferometer with resonant sideband extraction.

10.
Opt Lett ; 24(21): 1499-501, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18079845

RESUMO

We present a novel technique to frequency lock a laser to an optical cavity. This technique, tilt locking, utilizes a misalignment of the laser with respect to the cavity to produce a nonresonant spatial mode. By observing the interference between the carrier and the spatial mode one can obtain a quantum-noise-limited frequency discriminator. Tilt locking offers a number of potential benefits over existing locking schemes, including low cost, high sensitivity, and simple implementation.

11.
Opt Lett ; 18(10): 759-61, 1993 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19802263

RESUMO

We report on experimental demodulation of nonstationary shot noise, which is associated with strongly modulated light. For sinusoidal modulation and demodulation, measurements confirm theoretical predictions of 1.8-dB excess noise in the modulation quadrature and 3-dB noise reduction in the opposite quadrature, relative to the standard quantum limit. Demodulation with a third harmonic produces noise correlated with that which is due to the fundamental. Reducing excess noise by 0.8 dB in the modulation quadrature, by combining the fundamental and third harmonics in a 2:1 ratio, is shown to be feasible.

12.
Appl Opt ; 32(19): 3481-93, 1993 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20829971

RESUMO

Two schemes for interferometric optical phase measurement, with sensitivity limited only by quantum noise in the light, are analyzed. Direct detection is applicable to signals at modulation frequencies away from the technical noise of the light, so that quantum noise dominates the measurement. Alternatively signals otherwise obscured by classical optical noise may be recovered with a phase-modulation technique that shifts the signals to a quantum-noise-limited region of the photocurrent spectrum. The analysis is tested experimentally by using a polarimetric electric-field sensor. In the direct-detection scheme quantum-noise-limited performance produced a phase sensitivity of 0.25 µrad. The indirect scheme allowed subkilohertz signals to be extracted from classical noise 67 dB greater with sensitivity approaching the quantum noise limit.

13.
J Opt Soc Am A Opt Image Sci Vis ; 17(1): 120-8, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10641846

RESUMO

We present a method by which the effect of laser field variations on the signal output of an interferometric gravitational wave detector is rigorously determined. Using the Laser Interferometer Gravitational Wave Observatory (LIGO) optical configuration of a power recycled Michelson interferometer with Fabry-Perot arm cavities as an example, we calculate the excess noise after the input filter cavity (mode cleaner) and the dependence of the detector strain sensitivity on laser frequency and amplitude noise, radio frequency oscillator noise, and scattered-light phase noise. We find that noise on the radio frequency sidebands generally limits the detector's sensitivity.


Assuntos
Artefatos , Interferometria/instrumentação , Luz , Modelos Teóricos
14.
Appl Opt ; 37(25): 5886-93, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18286082

RESUMO

We present experimental data on the frequency response of both broadband and tuned signal recycling with a benchtop Michelson interferometer. These data are in excellent agreement with our simple theoretical model. We use in-line modulation to give a control system that provides a high degree of orthogonality between the two servo loops.

15.
Opt Lett ; 24(15): 1014-6, 1999 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18073925

RESUMO

We present a new optical control scheme for a laser interferometric gravitational wave detector that has a high degree of tolerance to interferometer spatial distortions and noise on the input light. The scheme involves resonating the rf sidebands in an interferometer arm cavity.

16.
Appl Opt ; 39(21): 3638-43, 2000 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18349936

RESUMO

Using a radio frequency coherent modulation and demodulation technique, we explicitly measure both the amplitude and the phase response of Fabry-Perot interferometers in reflection. This allows us to differentiate clearly between overcoupled and undercoupled cavities and allows a detailed measurement of the full width at half-maximum, the free spectral range, and the finesse of the cavities.

17.
Opt Lett ; 20(11): 1316-8, 1995 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19859511

RESUMO

We report excellent quantitative agreement between theoretical predictions and experimental observation of squeezing from a singly resonant second-harmonic-generating crystal. Limitations in the noise suppression imposed by the pump laser are explicitly modeled and confirmed by our measurements.

18.
Appl Opt ; 35(10): 1623-32, 1996 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21085282

RESUMO

We analyze and test a laboratory benchtop version of a compound interferometric phase sensor, a Michelson interferometer whose output is combined coherently with a phase-modulated local oscillator beam tapped off the Michelson input beam. This configuration models a whole class of external-modulation interferometers designed to shift signals, obscured by low-frequency intensity noise of the light source, into a shot-noise-limited region of the photocurrent spectrum. We find analytically that the shot-noise-limited sensitivity achievable with this system is comparable with that obtained by using internal phase modulation, with both schemes suffering (for different reasons) approximately a 22% sensitivity penalty compared with ideal shot-noise-limited direct detection. Experimentally we achieve true shot-noise-limited sensitivity, and we investigate trade-offs necessitated by commonly encountered nonideal features in any external-modulation system. Our analytic model, which specifically accounts for Michelson fringe contrast, electronic receiver noise, phase-modulation depth, and the local oscillator tap-off fraction, is sufficiently accurate to predict the absolute sensitivity of our benchtop instrument to within 0.5 dB.

19.
Phys Rev Lett ; 92(16): 161102, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15169214

RESUMO

We present results that are a classical analog to quantum noise cancellation. It is possible to breach the standard quantum limit in an interferometer by the use of squeezing to correlate orthogonal quadratures of quantum noise, causing their effects on the resulting sensitivity to cancel. A laser beam incident on a Fabry-Perot cavity was imprinted with classical, correlated noise in the same quadratures that cause shot noise and radiation pressure noise. Couplings between these quadratures due to a movable mirror, sensitive to radiation pressure, cause the excess classical noise to cancel. This cancellation was shown to improve the signal to noise ratio of an injected signal by approximately a factor of 10.

20.
Opt Lett ; 23(7): 540-2, 1998 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18084570

RESUMO

We present a noiseless optical amplifier comprising a signal-amplifying feed-forward loop and a power-amplifying injection-locked laser. We demonstrate that the signal amplifier can attain a signal-transfer coefficient limited solely by the quantum efficiency of our in-loop photodetector and that we can independently amplify the optical power while leaving the normalized intensity-noise spectral density of the input field unchanged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA