Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 114(6): 979-990, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32804439

RESUMO

S-layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S-layer protein present in the Gram-negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta-helical structure for EAR28894 similar to the Caulobacter S-layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S-layer was found surrounding the outer membrane in wild-type cells and completely removed from cells in an EAR28894 deletion mutant. S-layer material also appeared to be "shed" from wild-type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S-layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.


Assuntos
Biofilmes , Glicoproteínas de Membrana/genética , Pseudoalteromonas/genética , Organismos Aquáticos/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Glicoproteínas de Membrana/isolamento & purificação , Glicoproteínas de Membrana/ultraestrutura , Filogenia , Conformação Proteica
2.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33452030

RESUMO

Wastewater management in the Canadian Arctic is challenging due to climate extremes, small population sizes, and lack of conventional infrastructure for wastewater treatment. Although many northern communities use waste stabilization ponds (WSPs) as their primary form of wastewater treatment, few studies have explored WSP microbial communities and assessed effluent impacts on receiving waters from a microbiological perspective. Here, we used 16S rRNA gene and metagenome sequencing to characterize WSP and receiving water microbial communities for two time points bracketing the spring WSP thaw in Baker Lake (Nunavut) and compared these results to other Nunavut WSPs in Cambridge Bay and Kugluktuk. Most amplicon sequence variants (ASVs) recovered from these WSP samples belonged to the phylum Proteobacteria, with considerable variation between the three locations and only six ASVs shared among the WSPs at >0.2% relative abundance. Wastewater indicator ASVs for the Baker Lake WSP were identified, and few indicator ASVs were detected in samples originating from other upstream or downstream sites. The metagenomic data revealed a strong enrichment of antibiotic resistance genes for WSP samples relative to downstream and reference samples, especially for genes associated with macrolide resistance. Together, our results provide a baseline characterization for WSP microbial communities, demonstrate how indicator ASVs can be used to monitor attenuation and dilution of effluent microorganisms, and reveal that WSPs can serve as hot spots for antibiotic resistance genes.IMPORTANCE Given that the microbial communities of Arctic waste stabilization ponds (WSPs) are poorly studied to date, our characterization of multiple WSP systems and time points provides important baseline data that will assist with ongoing monitoring of effluent impacts on downstream aquatic ecosystems in the Arctic. This research also identifies indicator amplicon sequence variants (ASVs) of WSPs that will be helpful for future monitoring for WSP effluent attenuation and demonstrates that WSP microbial communities are enriched in antibiotic resistance genes. Given operational and infrastructure changes anticipated for wastewater treatment systems in the Arctic, baseline data such as these are essential for further development of safe and effective wastewater treatment systems.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana/genética , Metagenoma , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Bactérias/efeitos dos fármacos , Microbiota , Nunavut , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA
3.
Nature ; 521(7551): 213-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25731164

RESUMO

Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gß, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gß subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Peptídeo Hidrolases/metabolismo , Imunidade Vegetal/imunologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/imunologia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/imunologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Proteólise , Pseudomonas aeruginosa/patogenicidade , Receptores de Quinase C Ativada , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
4.
J Cell Biochem ; 118(9): 2559-2570, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28266048

RESUMO

More than 90% of cancer-related deaths are caused by metastasis. Epithelial-to-Mesenchymal Transition (EMT) causes tumor cell dissemination while the reverse process, Mesenchymal-to-Epithelial Transition (MET) allows cancer cells to grow and establish a potentially deadly metastatic lesion. Recent evidence indicates that in addition to E and M, cells can adopt a stable hybrid Epithelial/Mesenchymal (E/M) state where they can move collectively leading to clusters of Circulating Tumor Cells-the "bad actors" of metastasis. EMT is postulated to occur in all four major histological breast cancer subtypes. Here, we identify a set of genes strongly correlated with CDH1 in 877 cancer cell lines, and differentially expressed genes in cell lines overexpressing ZEB1, SNAIL, and TWIST. GRHL2 and ESRP1 appear in both these sets and also correlate with CDH1 at the protein level in 40 breast cancer specimens. Next, we find that GRHL2 and CD24 expression coincide with an epithelial character in human mammary epithelial cells. Further, we show that high GRHL2 expression is highly correlated with worse relapse-free survival in all four subtypes of breast cancer. Finally, we integrate CD24, GRHL2, and ESRP1 into a mathematical model of EMT regulation to validate the role of these players in EMT. Our data analysis and modeling results highlight the relationships among multiple crucial EMT/MET drivers including ZEB1, GRHL2, CD24, and ESRP1, particularly in basal-like breast cancers, which are most similar to triple-negative breast cancer (TNBC) and are considered the most dangerous subtype. J. Cell. Biochem. 118: 2559-2570, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
5.
Ecotoxicol Environ Saf ; 133: 373-80, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27497784

RESUMO

Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies.


Assuntos
Ácidos/metabolismo , Clorófitas/metabolismo , Mineração , Campos de Petróleo e Gás , Compostos Orgânicos/metabolismo , Fitoplâncton/metabolismo , Poluentes Químicos da Água/metabolismo , Ácidos/toxicidade , Alberta , Biodegradação Ambiental , Hidrocarbonetos , Compostos Orgânicos/toxicidade , Água/química , Poluentes Químicos da Água/toxicidade
6.
BMC Bioinformatics ; 16: 10, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592313

RESUMO

BACKGROUND: Second-generation sequencers generate millions of relatively short, but error-prone, reads. These errors make sequence assembly and other downstream projects more challenging. Correcting these errors improves the quality of assemblies and projects which benefit from error-free reads. RESULTS: We have developed a general-purpose error corrector that corrects errors introduced by Illumina, Ion Torrent, and Roche 454 sequencing technologies and can be applied to single- or mixed-genome data. In addition to correcting substitution errors, we locate and correct insertion, deletion, and homopolymer errors while remaining sensitive to low coverage areas of sequencing projects. Using published data sets, we correct 94% of Illumina MiSeq errors, 88% of Ion Torrent PGM errors, 85% of Roche 454 GS Junior errors. Introduced errors are 20 to 70 times more rare than successfully corrected errors. Furthermore, we show that the quality of assemblies improves when reads are corrected by our software. CONCLUSIONS: Pollux is highly effective at correcting errors across platforms, and is consistently able to perform as well or better than currently available error correction software. Pollux provides general-purpose error correction and may be used in applications with or without assembly.


Assuntos
Algoritmos , Bactérias/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Software , Bactérias/classificação , Biologia Computacional , DNA Bacteriano/análise , Bases de Dados Genéticas
7.
J Biol Chem ; 289(5): 2589-99, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24285546

RESUMO

Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/genética , Biologia Computacional , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Fatores de Transcrição Forkhead/química , Genes cdc/fisiologia , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Virus Evol ; 10(1): veae082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39411151

RESUMO

Horizontal gene transfer events between viruses and hosts are widespread across the virosphere. In cyanophage-host systems, such events often involve the transfer of genes involved in photosynthetic processes. The genome of the lytic cyanophage Ma-LMM01 infecting the toxic, bloom-forming, freshwater Microcystis aeruginosa NIES-298 contains a homolog of the non-bleaching A (nblA) gene, which was probably transferred from a cyanobacterial host. The function of the NblA protein is to disassemble phycobilisomes, cyanobacterial light-harvesting complexes that can comprise up to half of the cellular soluble protein content. NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high-light intensities and increases the intracellular nitrogen pool under nutrient limitation. NblA has previously been shown to interact with phycocyanin, one of the main components of phycobilisomes. Using structural modeling and protein-protein docking, we show that the NblA dimer of Ma-LMM01 is predicted to have a significantly higher binding affinity for M. aeruginosa NIES-298 phycocyanin (αß)6 hexamers, compared to the host homolog. Protein-protein docking suggests that the viral NblA structural model is able to bind deeper into the phycocyanin groove. The main structural difference between the virus and host NblA appears to be an additional α-helix near the N-terminus of the viral NblA, which interacts with the inside of the phycocyanin groove and could thus be considered partly responsible for this deeper binding. Interestingly, phylogenetic analyses indicate that this longer nblA was probably acquired from a different Microcystis host. Based on infection experiments and previous findings, we propose that a higher binding affinity of the viral NblA to the host phycocyanin may represent a selective advantage for the virus, whose infection cycle requires an increased phycobilisome degradation rate that is not fulfilled by the NblA of the host.

9.
Curr Microbiol ; 66(4): 331-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23212206

RESUMO

A previous study showed that overexpressing protein UnkG decreased the ability of the plant growth-promoting bacterium Pseudomonas putida UW4 to facilitate plant growth and an unkG knockout mutant of P. putida UW4 displayed increased plant growth promotion. When activities of wild-type and the UnkG overexpressing strain, including growth rates, carbon utilization, cell size, 3-indoleacetic acid production, and 1-aminocyclopropane-1-carboxylate deaminase activity, were measured, there were no apparent differences between the strains. Monitoring proteome-level changes to the wild-type and overexpressing transformant by means of two-dimensional difference in-gel electrophoresis followed by mass spectrometry identification of the altered proteins, 1839 protein spots were detected and 16 of the 84 protein spots with changed expression levels were identified. Proteins with increased expression included arginine deiminase, dihydrodipicolinate synthase, azurin, flavoprotein (α-subunit), ferredoxin-NADP reductase, ATP-dependent Hs1 protease (ATP-binding subunit), UDP-N-acetyl muramate-L-alanine ligase, biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase, and Fis two-component transcriptional regulator. Proteins with decreased expression included glutaminase-asparaginase, arginine/ornithine ABC transporter, cell division protein FtsZ and glutamyl-tRNA synthetase. The functions of three of the 16 proteins could not be identified. The results are consistent with UnkG being detrimental to plant growth because it acts as a regulatory protein that negatively affects several key cellular functions related to the energy balance of the bacterium.


Assuntos
Proteínas de Bactérias/metabolismo , Desenvolvimento Vegetal , Plantas/microbiologia , Pseudomonas putida/fisiologia , Proteínas de Bactérias/genética , Eletroforese em Gel Bidimensional , Metabolismo Energético , Expressão Gênica , Perfilação da Expressão Gênica , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Proteoma/análise , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento
10.
BMC Evol Biol ; 12: 227, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23181696

RESUMO

BACKGROUND: The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding abilities. RESULTS: To investigate these relationships, we defined the domain architecture of each of the 5 members followed by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein structures and functions of this family. Despite variation in domain structure, there are highly conserved regions across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs. CONCLUSIONS: We have shown with significant evidence that the 5 members of the class A scavenger receptors form a protein family. We have indicated that these receptors have a common origin which may provide insight into future functional work with these proteins.


Assuntos
Evolução Molecular , Variação Genética , Filogenia , Receptores Depuradores Classe A/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Sequência Conservada/genética , Bases de Dados Genéticas , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Gambás , Receptores Depuradores Classe A/classificação , Homologia de Sequência de Aminoácidos
11.
Mol Plant Microbe Interact ; 25(5): 668-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22352713

RESUMO

Plants in association with plant growth-promoting rhizobacteria can benefit from lower plant ethylene levels through the action of the bacterial enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. This enzyme cleaves the immediate biosynthetic precursor of ethylene, ACC. Ethylene is responsible for many aspects of plant growth and development but, under stressful conditions, it exacerbates stress symptoms. The ACC deaminase-containing bacterium Pseudomonas putida UW4 is a potent plant growth-promoting strain and, as such, was used to elaborate the detailed role of bacterial ACC deaminase in Brassica napus (canola) plant growth promotion. Transcriptional changes in bacterially treated canola plants were investigated with the use of an Arabidopsis thaliana oligonucleotide microarray. A heterologous approach was necessary because there are few tools available at present to measure global expression changes in nonmodel organisms, specifically with the sensitivity of microarrays. The results indicate that the transcription of genes involved in plant hormone regulation, secondary metabolism, and stress response was altered in plants by the presence of the bacterium, whereas the upregulation of genes for auxin response factors and the downregulation of stress response genes was observed only in the presence of bacterial ACC deaminase. These results support the suggestion that there is a direct link between ethylene and the auxin response, which has been suggested from physiological studies, and provide more evidence for the stress-reducing benefits of ACC deaminase-expressing plant growth-promoting bacteria.


Assuntos
Brassica napus/genética , Carbono-Carbono Liases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Pseudomonas putida/enzimologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brassica napus/microbiologia , Carbono-Carbono Liases/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Brotos de Planta/genética , Brotos de Planta/microbiologia , Pseudomonas putida/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/genética , Plântula/microbiologia
12.
Ecotoxicol Environ Saf ; 86: 156-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23031586

RESUMO

The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts.


Assuntos
Biomassa , Ácidos Carboxílicos/toxicidade , Petróleo/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alberta , Biodegradação Ambiental , Cianobactérias/efeitos dos fármacos , Cianobactérias/crescimento & desenvolvimento , Euglenozoários/efeitos dos fármacos , Euglenozoários/crescimento & desenvolvimento , Campos de Petróleo e Gás , Fitoplâncton/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
13.
Proteome Sci ; 9: 62, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21967861

RESUMO

BACKGROUND: Protein enrichment by sub-cellular fractionation was combined with differential-in-gel-electrophoresis (DIGE) to address the detection of the low abundance chromatin proteins in the budding yeast proteome. Comparisons of whole-cell extracts and chromatin fractions were used to provide a measure of the degree of chromatin association for individual proteins, which could be compared across sample treatments. The method was applied to analyze the effect of the DNA damaging agent methyl methanesulfonate (MMS) on levels of chromatin-associated proteins. RESULTS: Up-regulation of several previously characterized DNA damage checkpoint-regulated proteins, such as Rnr4, Rpa1 and Rpa2, was observed. In addition, several novel DNA damage responsive proteins were identified and assessed for genotoxic sensitivity using either DAmP (decreased abundance by mRNA perturbation) or knockout strains, including Acf2, Arp3, Bmh1, Hsp31, Lsp1, Pst2, Rnr4, Rpa1, Rpa2, Ste4, Ycp4 and Yrb1. A strain in which the expression of the Ran-GTPase binding protein Yrb1 was reduced was found to be hypersensitive to genotoxic stress. CONCLUSION: The described method was effective at unveiling chromatin-associated proteins that are less likely to be detected in the absence of fractionation. Several novel proteins with altered chromatin abundance were identified including Yrb1, pointing to a role for this nuclear import associated protein in DNA damage response.

14.
J Cell Physiol ; 223(3): 798-809, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20232312

RESUMO

The regulatory role of eukaryotic translation initiation factor 5A1 (eIF5A1) in apoptosis was examined using HT-29 and HeLa S3 cells. eIF5A is the only known protein to contain the unusual amino acid, hypusine, and eIF5A1 is one of two human eIF5A family members. Two observations indicated that eIF5A1 is involved in apoptosis. First, siRNA-mediated suppression of eIF5A1 resulted in inhibition of apoptosis induced by various apoptotic stimuli, and second, adenovirus-mediated over-expression of eIF5A1 strongly induced apoptotic cell death. A mutant of eIF5A1 incapable of being hypusinated also induced apoptosis when over-expressed indicating that unhypusinated eIF5A1 is the pro-apoptotic form of the protein. Over-expression of eIF5A1 or of the mutant resulted in loss of mitochondrial transmembrane potential, translocation of Bax to the mitochondria, release of cytochrome c, caspase activation, up-regulation of p53, and up-regulation of Bim, a pro-apoptotic BH3-only Bcl-2 family protein. In addition, Bim(L) and Bim(S), the pro-apoptotic alternative spliced forms of Bim, were induced in response to over-expression of eIF5A1. Thus eIF5A1 appears to induce apoptosis by activating the mitochondrial apoptotic pathway. Proteomic analyses indicated that, of 1,899 proteins detected, 131 showed significant changes in expression (P or=1.5) within 72 h of eIF5A1 up-regulation. Among these are proteins involved in translation and protein folding, transcription factors, proteins mediating proteolysis, and a variety of proteins known to be directly involved in apoptosis. These observations collectively indicate that unhypusinated eIF5A1 plays a central role in the regulation of apoptosis.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Adenoviridae/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Caspases/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Ativação Enzimática , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Transporte Proteico , Proteômica , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
15.
BMC Struct Biol ; 10: 23, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20678238

RESUMO

BACKGROUND: Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. RESULTS: The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. CONCLUSIONS: Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.


Assuntos
Metabolismo dos Carboidratos , Biologia Computacional/métodos , Sequência Conservada , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos Aromáticos , Celulose/química , Celulose/metabolismo , Bases de Dados de Proteínas , Análise Discriminante , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Solubilidade , Especificidade da Espécie , Nicotiana/classificação
16.
ERJ Open Res ; 6(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31984210

RESUMO

LABA/GC intervention in airway epithelial cells exposed to cannabis smoke reduces levels of pro-inflammatory (CXCL8) and antiviral (CXCL10) mediators, while transcriptomic signatures of neutrophil-mediated immunity and oxidative stress remain elevated http://bit.ly/2qiSQhH.

17.
Proteomics ; 9(17): 4271-4, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19688754

RESUMO

A proteome reference map containing 326 2-D gel spots representing 275 different proteins was constructed for the plant growth-promoting bacterium Pseudomonas putida UW4. Protein identifications were obtained using Q-TOF MS/MS spectra matching to homologous proteins from other Pseudomonas strains and confirmed by PMF analysis. This data set is accessible at http://world-2dpage.expasy.org/repository/ and will aid in further characterization of Pseudomonas strains and interactions of plant growth-promoting bacterium with the plant rhizosphere environment.


Assuntos
Proteínas de Bactérias/análise , Desenvolvimento Vegetal , Plantas/microbiologia , Proteoma/análise , Pseudomonas putida/metabolismo , Proteínas de Bactérias/química , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Proteoma/química , Padrões de Referência
18.
Mol Plant Microbe Interact ; 22(6): 686-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19445593

RESUMO

The influence of canola root exudates on the proteome of Pseudomonas putida UW4 and the mutant strain P. putida UW4/AcdS(-), which lacks a functional 1-aminocyclopropane-1-carboxylate deaminase gene, was examined using two-dimensional difference in-gel electrophoresis. Seventy-two proteins with significantly altered expression levels in the presence of canola root exudates were identified by mass spectrometry. Many of these proteins are involved in nutrient transport and utilization, cell envelope synthesis, and transcriptional or translational regulation and, hence, may play important roles in plant-bacterial interactions. Four proteins showing large changes in expression in response to canola root exudates in both the wild-type and mutant strains of P. putida UW4 (i.e., outer membrane protein F, peptide deformylase, transcription regulator Fis family protein, and a previously uncharacterized protein) were both overexpressed and disrupted in P. putida UW4 in an effort to better understand their functions. Functional studies of these modified strains revealed significantly enhanced or inhibited plant-growth-promoting abilities compared with the wild-type P. putida UW4, in agreement with the suggested involvement of three of these four proteins in plant-bacterial interactions. The work reported here suggests strategies to both identify potential antibacterial agents and develop bacterial strains that might be useful adjuncts to agriculture. This approach may be an effective means of identifying key proteins mediating the interactions of bacteria with their rhizosphere environment.


Assuntos
Proteínas de Bactérias/fisiologia , Brassica napus/microbiologia , Pseudomonas putida/fisiologia , Aminoácidos Cíclicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Brassica napus/química , Brassica napus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Espectrometria de Massas , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Proteômica , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/genética
19.
Proteome Sci ; 7: 18, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19422705

RESUMO

BACKGROUND: Plant growth-promoting bacteria can alleviate the inhibitory effects of various heavy metals on plant growth, via decreasing levels of stress-induced ethylene. However, little has been done to detect any mechanisms specific for heavy metal resistance of this kind of bacteria. Here, we investigate the response of the wild-type plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress using proteomic approaches. The mutant strain P. putida UW4/AcdS-, lacking a functional 1-aminocyclopropane-1-carboxylic acid deaminase gene, was also assessed for its response to nickel stress. RESULTS: Two dimensional difference in-gel electrophoresis (DIGE) was used to detect significantly up- or down- regulated proteins (p < 0.05, | ratio | > 1.5) in P. putida in response to the presence of 2 mM Ni. Out of a total number of 1,702 proteins detected on the analytical gels for P. putida UW4, the expression levels of 82 (4.82%) proteins increased significantly while the expression of 81 (4.76%) proteins decreased significantly. Of 1,575 proteins detected on the analytical gels for P. putida UW4/AcdS-, the expression levels of 74 (4.70%) proteins increased and 51 (3.24%) proteins decreased significantly. Thirty-five proteins whose expression was altered were successfully identified by mass spectrometry and sequence comparisons with related species. Nineteen of the identified proteins were detected as differentially expressed in both wild-type and mutant expression profiles. CONCLUSION: Functional assessment of proteins with significantly altered expression levels revealed several mechanisms thought to be involved in bacterial heavy metal detoxification, including general stress adaptation, anti-oxidative stress and heavy metal efflux proteins. This information may contribute to the development of plant growth-promoting bacteria mediated phytoremediation processes.

20.
Nat Biotechnol ; 24(7): 852-5, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16823370

RESUMO

Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants.


Assuntos
Proteínas Anticongelantes/isolamento & purificação , Bases de Dados de Proteínas/classificação , Algoritmos , Proteínas Anticongelantes/classificação , Modelos Químicos , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA