Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 532(7600): 496-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26982721

RESUMO

Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.


Assuntos
Fósseis , Filogenia , Vertebrados/classificação , Nadadeiras de Animais/anatomia & histologia , Animais , Extinção Biológica , Olho/anatomia & histologia , Trato Gastrointestinal/anatomia & histologia , Illinois , Lampreias/classificação , Notocorda/anatomia & histologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia
2.
Proc Biol Sci ; 286(1902): 20190589, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31088270

RESUMO

Male peacock spiders ( Maratus, Salticidae) compete to attract female mates using elaborate, sexually selected displays. They evolved both brilliant colour and velvety black. Here, we use scanning electron microscopy, hyperspectral imaging and finite-difference time-domain optical modelling to investigate the deep black surfaces of peacock spiders. We found that super black regions reflect less than 0.5% of light (for a 30° collection angle) in Maratus speciosus (0.44%) and Maratus karrie (0.35%) owing to microscale structures. Both species evolved unusually high, tightly packed cuticular bumps (microlens arrays), and M. karrie has an additional dense covering of black brush-like scales atop the cuticle. Our optical models show that the radius and height of spider microlenses achieve a balance between (i) decreased surface reflectance and (ii) enhanced melanin absorption (through multiple scattering, diffraction out of the acceptance cone of female eyes and increased path length of light through absorbing melanin pigments). The birds of paradise (Paradiseidae), ecological analogues of peacock spiders, also evolved super black near bright colour patches. Super black locally eliminates white specular highlights, reference points used to calibrate colour perception, making nearby colours appear brighter, even luminous, to vertebrates. We propose that this pre-existing, qualitative sensory experience-'sensory bias'-is also found in spiders, leading to the convergent evolution of super black for mating displays in jumping spiders.


Assuntos
Cor , Pigmentação , Aranhas/química , Aranhas/fisiologia , Animais , Feminino , Masculino , Microscopia Eletrônica de Varredura
4.
Biol Lett ; 11(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26289442

RESUMO

Pterygotid eurypterids have traditionally been interpreted as active, high-level, visual predators; however, recent studies of the visual system and cheliceral morphology of the pterygotid Acutiramus contradict this interpretation. Here, we report similar analyses of the pterygotids Erettopterus, Jaekelopterus and Pterygotus, and the pterygotid sister taxon Slimonia. Representative species of all these genera have more acute vision than A. cummingsi. The visual systems of Jaekelopterus rhenaniae and Pterygotus anglicus are comparable to that of modern predatory arthropods. All species of Jaekelopterus and Pterygotus have robust crushing chelicerae, morphologically distinct from the weaker slicing chelicerae of Acutiramus. Vision in Erettopterus osiliensis and Slimonia acuminata is more acute than in Acutiramus cummingsi, but not to the same degree as in modern active predators, and the morphology of the chelicerae in these genera suggests a grasping function. The pterygotids evolved with a shift in ecology from generalized feeder to specialized predator. Pterygotid eurypterids share a characteristic morphology but, although some were top predators, their ecology differs radically between genera.


Assuntos
Artrópodes/anatomia & histologia , Evolução Biológica , Olho Composto de Artrópodes/anatomia & histologia , Fósseis , Casco e Garras/anatomia & histologia , Animais , Artrópodes/classificação , Artrópodes/fisiologia , Comportamento Predatório
5.
Biol Lett ; 10(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25009243

RESUMO

Eurypterids are a group of extinct chelicerates that ranged for over 200 Myr from the Ordovician to the Permian. Gigantism is common in the group; about 50% of families include taxa over 0.8 m in length. Among these were the pterygotids (Pterygotidae), which reached lengths of over 2 m and were the largest arthropods that ever lived. They have been interpreted as highly mobile visual predators on the basis of their large size, enlarged, robust chelicerae and forward-facing compound eyes. Here, we test this interpretation by reconstructing the visual capability of Acutiramus cummingsi (Pterygotidae) and comparing it with that of the smaller Eurypterus sp. (Eurypteridae), which lacked enlarged chelicerae, and other arthropods of similar geologic age. In A. cummingsi, there is no area of lenses differentiated to provide increased visual acuity, and the interommatidial angles (IOA) do not fall within the range of high-level modern arthropod predators. Our results show that the visual acuity of A. cummingsi is poor compared with that of co-occurring Eurypterus sp. The ecological role of pterygotids may have been as predators on thin-shelled and soft-bodied prey, perhaps in low-light conditions or at night.


Assuntos
Artrópodes/anatomia & histologia , Olho Composto de Artrópodes/anatomia & histologia , Fósseis , Acuidade Visual , Animais , Ecologia , Comportamento Predatório
6.
Sci Rep ; 14(1): 118, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167954

RESUMO

Suberin, a complex biopolymer, forms a water- and gas-insoluble barrier that protects the inner tissues of plants. It is abundant in tree bark, particularly in the cork oak Quercus suber. Anatomically, fossil bark has been described since the Devonian. However, its distinctive constituent suberin has not yet been reported from the fossil record. Here we present unambiguous chemical evidence for intact suberin from the bark of a middle Eocene monkeyhair tree from Geiseltal, eastern Germany. High-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) detected constituents of suberin in the outer layer the fossil monkeyhair tree, which confirms previous morphological interpretation of this tissue as bark, and chemically differentiates this layer from the two tissues of the inner layer. Notably, this is the first study with compelling chemical evidence for suberin in fossil bark. Fluorescence microspectroscopy additionally supports the presence of suberin. Fossilization conditions in the Eocene Geiseltal deposit were likely mild, with low moisture and temperatures, contributing to the remarkable preservation of bark and inner laticifer mats of the monkeyhair trees growing there 45 million years ago.


Assuntos
Quercus , Árvores , Casca de Planta , Lipídeos/química , Alemanha , Quercus/química
7.
Commun Biol ; 7(1): 53, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184735

RESUMO

Fluorescence emission is common in plants. While fluorescence microscopy has been widely used to study living plants, its application in quantifying the fluorescence of fossil plants has been limited. Fossil plant fluorescence, from original fluorophores or formed during fossilization, can offer valuable insights into fluorescence in ancient plants and fossilization processes. In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood. The advanced micro-spectroscope utilized, with its pixel-level spectral resolution and line-scan excitation capabilities, allows us to collect comprehensive excitation and emission spectra with high sensitivity and minimal laser damage to the specimens. By applying linear spectral unmixing to the spectrally resolved fluorescence images, we can differentiate between (a) the matrix and (b) the materials that comprise the fossil. Our analysis suggests that the latter correspond to durable tissues such as lignin and cellulose. Additionally, we observe potential signals from chlorophyll derivatives/tannins, although minerals may have contributed to this. This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. Furthermore, the protocols developed herein can also be applied to analyze non-plant fossils and biological specimens.


Assuntos
Ecossistema , Fósseis , Microscopia de Fluorescência , Âmbar , Celulose , Corantes Fluorescentes , Ionóforos
8.
Biol Rev Camb Philos Soc ; 97(2): 449-465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34649299

RESUMO

Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.


Assuntos
Artrópodes , Fósseis , Animais , Bactérias , Ferro
9.
Sci Rep ; 12(1): 15959, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153396

RESUMO

Calcium oxalate (CaOx) is one of the most common bio-mineral in extant plants and is believed to serve a variety of functions such as calcium storage and herbivore defense. However, traces of CaOx crystals have rarely been identified in fossil plants, and they are primarily known from fossil gymnosperms, where empty cavities of former CaOx crystals or ghost crystals have been reported from leaf cuticles of some Late Cretaceous and Cenozoic conifers. Here we investigate fossil angiosperm leaves from the late Oligocene Rott Fossil Lagerstätte and report ghost crystals of various shapes, sizes and topology (distribution patterns), and cavities. These micromorphological structures of fossil leaves are compared to CaOx deposits in leaves of extant plants: globular structures in fossil leaves resemble CaOx druses (crystal aggregates) in fresh leaves in size and distribution; and angular or brick-shaped structures in the vascular system of fossil leaves closely resemble prismatic CaOx crystals in the vascular system of extant leaves in both size and topology. Chemically, CaOx druses have survived fossilization as cavities only, and were replaced by organic matter and ghost minerals containing Ca, Si, Al, S, and Fe. The identification of former CaOx remains in leaf fossils provides novel insights on the fate of plant bio-minerals during fossilization. More importantly, it provides an additional aspect of the ecophysiology of fossil plants thus improving the accuracy of palaeoecological reconstructions and can provide a broader perspective on the evolution of CaOx and their rule in plant ecology across geological timescales. Alternative interpretations of the fossil microstructures are discussed but ruled out.


Assuntos
Oxalato de Cálcio , Fósseis , Biomineralização , Cálcio , Oxalato de Cálcio/química , Cristalização , Minerais , Folhas de Planta , Plantas
10.
RSC Adv ; 11(13): 7552-7563, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423242

RESUMO

Porphyrins are macrocyclic tetrapyrrole derivatives that are widely distributed in nature. They are often complexed with a metal ion located in the center of the ring system and may be modified by various substituents including additional rings, or by ring opening, which leads to a plethora of different functions. Due to their extended conjugated aromatic ring system, porphyrins absorb light in the visible range and therefore show characteristic colors. Well-known natural porphyrins include the red-colored heme present in hemoglobin, which is responsible for blood oxygen transport, and the chlorophylls in some bacteria and in plants which are utilized for photosynthesis. Porphyrins are mostly lipophilic pigments that display relatively high chemical stability. Therefore, they can even survive hundreds of millions of years. The present review article provides an overview of natural porphyrins, their chemical structures, and properties. A special focus is put on porphyrins discovered in the fossil record. Examples will be highlighted, and information on their chemical analysis will be provided. We anticipate that the development of novel analytical methods with increased sensitivity will prompt new discoveries of porphyrins in fossils.

11.
Curr Biol ; 30(21): 4316-4321.e2, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32916114

RESUMO

Arachnids are the second most successful terrestrial animal group after insects [1] and were one of the first arthropod clades to successfully invade land [2]. Fossil evidence for this transition is limited, with the majority of arachnid clades first appearing in the terrestrial fossil record. Furthermore, molecular clock dating has suggested a Cambrian-Ordovician terrestrialization event for arachnids [3], some 60 Ma before their first fossils in the Silurian, although these estimates assume that arachnids evolved from a fully aquatic ancestor. Eurypterids, the sister clade to terrestrial arachnids [4-6], are known to have undergone major macroecological shifts in transitioning from marine to freshwater environments during the Devonian [7, 8]. Discoveries of apparently subaerial eurypterid trackways [9, 10] have led to the suggestion that eurypterids were even able to venture on land and possibly breathe air [11]. However, modern horseshoe crabs undertake amphibious excursions onto land to reproduce [12], rendering trace fossil evidence alone inconclusive. Here, we present details of the respiratory organs of Adelophthalmus pyrrhae sp. nov. from the Carboniferous of Montagne Noire, France [13], revealed through micro computed tomography (µ-CT) imaging. Pillar-like trabeculae on the dorsal surface of each gill lamella indicate eurypterids were capable of subaerial breathing, suggesting that book gills are the direct precursors to book lungs while vascular ancillary respiratory structures known as Kiemenplatten represent novel air-breathing structures. The discovery of air-breathing structures in eurypterids indicates that characters permitting terrestrialization accrued in the arachnid stem lineage and suggests the Cambrian-Ordovician ancestor of arachnids would also have been semi-terrestrial.


Assuntos
Evolução Biológica , Respiração , Sistema Respiratório/anatomia & histologia , Escorpiões/fisiologia , Animais , Organismos Aquáticos/fisiologia , Fósseis/anatomia & histologia , Fósseis/diagnóstico por imagem , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/fisiologia , Sistema Respiratório/diagnóstico por imagem , Escorpiões/anatomia & histologia , Microtomografia por Raio-X
12.
Geobiology ; 18(5): 560-565, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32347003

RESUMO

The chemical composition of fossil soft tissues is a potentially powerful and yet underutilized tool for elucidating the affinity of problematic fossil organisms. In some cases, it has proven difficult to assign a problematic fossil even to the invertebrates or vertebrates (more generally chordates) based on often incompletely preserved morphology alone, and chemical composition may help to resolve such questions. Here, we use in situ Raman microspectroscopy to investigate the chemistry of a diverse array of invertebrate and vertebrate fossils from the Pennsylvanian Mazon Creek Lagerstätte of Illinois, and we generate a ChemoSpace through principal component analysis (PCA) of the in situ Raman spectra. Invertebrate soft tissues characterized by chitin (polysaccharide) fossilization products and vertebrate soft tissues characterized by protein fossilization products plot in completely separate, non-overlapping regions of the ChemoSpace, demonstrating the utility of certain soft tissue molecular signatures as biomarkers for the original soft tissue composition of fossil organisms. The controversial problematicum Tullimonstrum, known as the Tully Monster, groups with the vertebrates, providing strong evidence of a vertebrate rather than invertebrate affinity.


Assuntos
Invertebrados , Vertebrados , Animais , Fósseis , Illinois , Filogenia
13.
Sci Rep ; 9(1): 6420, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015542

RESUMO

Ancient protein analysis is a rapidly developing field of research. Proteins ranging in age from the Quaternary to Jurassic are being used to answer questions about phylogeny, evolution, and extinction. However, these analyses are sometimes contentious, and focus primarily on large vertebrates in sedimentary fossilisation environments; there are few studies of protein preservation in fossils in amber. Here we show exceptionally slow racemisation rates during thermal degradation experiments of resin enclosed feathers, relative to previous thermal degradation experiments of ostrich eggshell, coral skeleton, and limpet shell. We also recover amino acids from two specimens of fossil feathers in amber. The amino acid compositions are broadly similar to those of degraded feathers, but concentrations are very low, suggesting that much of the original protein has been degraded and lost. High levels of racemisation in more apolar, slowly racemising amino acids suggest that some of the amino acids were ancient and therefore original. Our findings indicate that the unique fossilisation environment inside amber shows potential for the recovery of ancient amino acids and proteins.


Assuntos
Âmbar/química , Aminoácidos/isolamento & purificação , Casca de Ovo/química , Plumas/química , Fósseis/história , Proteínas/isolamento & purificação , Aminoácidos/química , Aminoácidos/história , Animais , Aves/anatomia & histologia , Cromatografia de Fase Reversa , Dinossauros/anatomia & histologia , Extinção Biológica , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , História Antiga , Preservação Biológica , Proteínas/química , Proteínas/história , Proteólise
14.
PLoS One ; 13(4): e0195482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621345

RESUMO

Fossils entombed in amber are a unique resource for reconstructing forest ecosystems, and resolving relationships of modern taxa. Such fossils are famous for their perfect, life-like appearance. However, preservation quality is vast with many sites showing only cuticular preservation, or no fossils. The taphonomic processes that control this range are largely unknown; as such, we know little about potential bias in this important record. Here we employ actualistic experiments, using, fruit flies and modern tree resin to determine whether resin type, gut microbiota, and dehydration prior to entombment affects decay. We used solid phase microextraction gas chromatography-mass spectrometry (SPME GC-MS) to confirm distinct tree resin chemistry; gut microbiota of flies was modified using antibiotics and categorized though sequencing. Decay was assessed using phase contrast synchrotron tomography. Resin type demonstrates a significant control on decay rate. The composition of the gut microbiota was also influential, with minor changes in composition affecting decay rate. Dehydration prior to entombment, contrary to expectations, enhanced decay. Our analyses show that there is potential significant bias in the amber fossil record, especially between sites with different resin types where ecological completeness and preservational fidelity are likely affected.


Assuntos
Âmbar , Drosophila melanogaster , Âmbar/química , Animais , Desidratação , Drosophila melanogaster/química , Drosophila melanogaster/microbiologia , Fósseis , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal , Microextração em Fase Sólida , Tomografia , Traqueófitas/química , Árvores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA