Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(4): 3451-63, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907004

RESUMO

Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials and detectors in order to operate simultaneously in multiple spectral regions. Each distinct waveband must be detected at different spatial locations on a single chip or by separate chips optimised for each band. Here, we report on a single component that optically multiplexes visible, Mid Infrared (4.5 µm) and Terahertz (126 µm) radiation thereby maximising the spectral information density. We hybridise plasmonic and metamaterial structures to form a device capable of simultaneously filtering 15 visible wavelengths and absorbing Mid Infrared and Terahertz. Our synthetic multi-spectral component could be integrated with silicon complementary metal-oxide semiconductor technology where Si photodiodes are available to detect the visible radiation and micro-bolometers available to detect the Infrared/Terahertz and render an inexpensive, mass-producible camera capable of forming coaxial visible, Infrared and Terahertz images.

2.
Opt Express ; 21(16): 19142-52, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938829

RESUMO

Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other.

3.
J Vis Exp ; (70)2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23299442

RESUMO

Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.


Assuntos
Manufaturas , Radiação Terahertz , Absorção , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA