Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 86(7): 1677-1689, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327570

RESUMO

Formicamycins and their biosynthetic intermediates the fasamycins are polyketide antibiotics produced by Streptomyces formicae KY5 from a pathway encoded by the for biosynthetic gene cluster. In this work the ability of Streptomyces coelicolor M1146 and the ability of Saccharopolyspora erythraea Δery to heterologously express the for biosynthetic gene cluster were assessed. This led to the identification of eight new glycosylated fasamycins modified at different phenolic groups with either a monosaccharide (glucose, galactose, or glucuronic acid) or a disaccharide comprised of a proximal hexose (either glucose or galactose), with a terminal pentose (arabinose) moiety. In contrast to the respective aglycones, minimal inhibitory screening assays showed these glycosylated congeners lacked antibacterial activity.


Assuntos
Galactose , Streptomyces coelicolor , Galactose/metabolismo , Antibacterianos/metabolismo , Streptomyces coelicolor/genética , Família Multigênica , Glucose/metabolismo
2.
Nat Commun ; 14(1): 6977, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914713

RESUMO

Isoflavones are a group of phenolic compounds mostly restricted to plants of the legume family, where they mediate important interactions with plant-associated microbes, including in defense from pathogens and in nodulation. Their well-studied health promoting attributes have made them a prime target for metabolic engineering, both for bioproduction of isoflavones as high-value molecules, and in biofortification of food crops. A key gene in their biosynthesis, isoflavone synthase, was identified in legumes over two decades ago, but little is known about formation of isoflavones outside of this family. Here we identify a specialized wheat-specific isoflavone synthase, TaCYP71F53, which catalyzes a different reaction from the leguminous isoflavone synthases, thus revealing an alternative path to isoflavonoid biosynthesis and providing a non-transgenic route for engineering isoflavone production in wheat. TaCYP71F53 forms part of a biosynthetic gene cluster that produces a naringenin-derived O-methylated isoflavone, 5-hydroxy-2',4',7-trimethoxyisoflavone, triticein. Pathogen-induced production and in vitro antimicrobial activity of triticein suggest a defense-related role for this molecule in wheat. Genomic and metabolic analyses of wheat ancestral grasses further show that the triticein gene cluster was introduced into domesticated emmer wheat through natural hybridization ~9000 years ago, and encodes a pathogen-responsive metabolic pathway that is conserved in modern bread wheat varieties.


Assuntos
Fabaceae , Isoflavonas , Isoflavonas/metabolismo , Fitoalexinas , Triticum/genética , Triticum/metabolismo , Fabaceae/metabolismo , Metabolismo Secundário
3.
Cell Chem Biol ; 28(4): 515-523.e5, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33440167

RESUMO

The formicamycins are promising antibiotics first identified in Streptomyces formicae KY5, which produces the compounds at low levels. Here, we show that by understanding the regulation of the for biosynthetic gene cluster (BGC), we can rewire the BGC to increase production levels. The for BGC consists of 24 genes expressed on nine transcripts. The MarR regulator ForJ represses expression of seven transcripts encoding the major biosynthetic genes as well as the ForGF two-component system that initiates biosynthesis. We show that overexpression of forGF in a ΔforJ background increases formicamycin production 10-fold compared with the wild-type. De-repression, by deleting forJ, also switches on biosynthesis in liquid culture and induces the production of additional, previously unreported formicamycin congeners. Furthermore, combining de-repression with mutations in biosynthetic genes leads to biosynthesis of additional bioactive precursors.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Streptomyces/química , Antibacterianos/química , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA