Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(4): 401-422, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36760076

RESUMO

Cyclic AMP (cAMP) signaling is essential to Mycobacterium tuberculosis (Mtb) pathogenesis. However, the roles of phosphodiesterases (PDEs) Rv0805, and the recently identified Rv1339, in cAMP homeostasis and Mtb biology are unclear. We found that Rv0805 modulates Mtb growth within mice, macrophages and on host-associated carbon sources. Mycobacterium bovis BCG grown on a combination of propionate and glycerol as carbon sources showed high levels of cAMP and had a strict requirement for Rv0805 cNMP hydrolytic activity. Supplementation with vitamin B12 or spontaneous genetic mutations in the pta-ackA operon restored the growth of BCGΔRv0805 and eliminated propionate-associated cAMP increases. Surprisingly, reduction of total cAMP levels by ectopic expression of Rv1339 restored only 20% of growth, while Rv0805 complementation fully restored growth despite a smaller effect on total cAMP levels. Deletion of an Rv0805 localization domain also reduced BCG growth in the presence of propionate and glycerol. We propose that localized Rv0805 cAMP hydrolysis modulates activity of a specialized pathway associated with propionate metabolism, while Rv1339 has a broader role in cAMP homeostasis. Future studies will address the biological roles of Rv0805 and Rv1339, including their impacts on metabolism, cAMP signaling and Mtb pathogenesis.


Assuntos
Mycobacterium tuberculosis , Diester Fosfórico Hidrolases , Animais , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Propionatos/metabolismo , Virulência , Hidrólise , Vacina BCG/metabolismo , Glicerol/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo
2.
J Infect Dis ; 223(5): 743-751, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417696

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) received an Emergency Use Authorization by the US Food and Drug Administration (FDA). CCP with a signal-to-cutoff ratio of ≥12 using the Ortho VITROS severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) test (OVSARS2IgG) is permitted to be labeled "high titer." Little is known about the relationship between OVSARS2IgG ratio and neutralizing capacity of plasma/sera against genuine SARS-CoV-2. METHODS: Nine hundred eighty-one samples from 196 repeat CCP donors 0-119 days post-initial donation (DPID) were analyzed. Neutralizing capacity was assessed for 50% (PRNT50) and 90% (PRNT90) reduction of infectious virus using the gold standard plaque reduction neutralization test (PRNT). A subset of 91 donations was evaluated by OVSARS2IgG and compared to PRNT titers for diagnostic accuracy. RESULTS: Of donations, 32.7%/79.5% (PRNT90/PRNT50) met a 1:80 titer initially but only 14.0%/48.8% (PRNT90/PRNT50) met this cutoff ≥85 DPID. Correlation of OVSARS2IgG results to neutralizing capacity allowed extrapolation to CCP therapy results. CCP with OVSARS2IgG ratios equivalent to a therapeutically beneficial group had neutralizing titers of ≥1:640 (PRNT50) and/or ≥1:80 (PRNT90). Specificity and positive predictive value of the OVSARS2IgG for qualifying highly neutralizing CCP was optimal using ratios significantly greater than the FDA cutoff. CONCLUSIONS: This information provides a basis for refining the recommended properties of CCP used to treat COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Estudos de Coortes , Feminino , Humanos , Imunização Passiva/normas , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Estudos Retrospectivos , Sensibilidade e Especificidade , Fatores de Tempo , Soroterapia para COVID-19
3.
J Infect Dis ; 223(1): 47-55, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104179

RESUMO

Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/terapia , Testes de Neutralização , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização Passiva , Soroterapia para COVID-19
4.
Mol Microbiol ; 113(2): 504-520, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782837

RESUMO

Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, must adapt to host-associated environments during infection by modulating gene expression. Small regulatory RNAs (sRNAs) are key regulators of bacterial gene expression, but their roles in Mtb are not well understood. Here, we address the expression and function of the Mtb sRNA Mcr11, which is associated with slow bacterial growth and chronic infections in mice. We found that stable expression of Mcr11 requires multiple factors specific to TB-complex bacteria, including the AbmR transcription factor. Bioinformatic analyses used to predict regulatory targets of Mcr11 identified 7-11 nucleotide regions with potential for direct base-pairing with Mcr11 immediately upstream of Rv3282, fadA3, and lipB. mcr11-dependent regulation of these genes was demonstrated using qRT-PCR and found to be responsive to the presence of fatty acids. Mutation of the putative Mcr11 base-pairing site upstream of lipB in a promoter reporter strain resulted in significant de-repression of lipB expression, similar to that observed in mcr11-deleted Mtb. These studies establish Mcr11's roles in regulating growth and central metabolism in Mtb. Our finding that multiple TB-complex-specific factors are required for production of stable Mcr11 also emphasizes the need to better understand mechanisms of sRNA expression and stability in TB.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Biologia Computacional , Genes Bacterianos , Lipoilação/genética , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Artigo em Inglês | MEDLINE | ID: mdl-33077662

RESUMO

Bacterial infections and the rise of antibiotic resistance, especially multidrug resistance, have generated a clear need for discovery of novel therapeutics. We demonstrated that a small-molecule drug, PKZ18, targets the T-box mechanism and inhibits bacterial growth. The T-box is a structurally conserved riboswitch-like gene regulator in the 5' untranslated region (UTR) of numerous essential genes of Gram-positive bacteria. T-boxes are stabilized by cognate, unacylated tRNA ligands, allowing the formation of an antiterminator hairpin in the mRNA that enables transcription of the gene. In the absence of an unacylated cognate tRNA, transcription is halted due to the formation of a thermodynamically more stable terminator hairpin. PKZ18 targets the site of the codon-anticodon interaction of the conserved stem I and reduces T-box-controlled gene expression. Here, we show that novel analogs of PKZ18 have improved MICs, bactericidal effects against methicillin-resistant Staphylococcus aureus (MRSA), and increased efficacy in nutrient-limiting conditions. The analogs have reduced cytotoxicity against eukaryotic cells compared to PKZ18. The PKZ18 analogs acted synergistically with aminoglycosides to significantly enhance the efficacy of the analogs and aminoglycosides, further increasing their therapeutic windows. RNA sequencing showed that the analog PKZ18-22 affects expression of 8 of 12 T-box controlled genes in a statistically significant manner, but not other 5'-UTR regulated genes in MRSA. Very low levels of resistance further support the existence of multiple T-box targets for PKZ18 analogs in the cell. Together, the multiple targets, low resistance, and synergy make PKZ18 analogs promising drugs for development and future clinical applications.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Expressão Gênica , Bactérias Gram-Positivas/genética , Staphylococcus aureus Resistente à Meticilina/genética , RNA de Transferência/genética
6.
Nucleic Acids Res ; 46(1): 403-420, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29165665

RESUMO

Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr's DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr's multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member.


Assuntos
Proteínas de Bactérias/metabolismo , DNA/metabolismo , Sequências Hélice-Volta-Hélice , Mycobacterium tuberculosis/metabolismo , Motivos de Nucleotídeos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/genética , Modelos Moleculares , Mycobacterium tuberculosis/genética , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
7.
Mol Microbiol ; 110(5): 811-830, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30207611

RESUMO

Gene regulatory networks used by Mycobacterium tuberculosis (Mtb) during infection include many genes of unknown function, confounding efforts to determine their roles in Mtb biology. Rv1265 encodes a conserved hypothetical protein that is expressed during infection and in response to elevated levels of cyclic AMP. Here, we report that Rv1265 is a novel auto-inhibitory ATP-binding transcription factor that upregulates expression of the small non-coding RNA Mcr11, and propose that Rv1265 be named ATP-binding mcr11 regulator (AbmR). AbmR directly and specifically bound DNA, as determined by electrophoretic mobility shift assays, and this DNA-binding activity was enhanced by AbmR's interaction with ATP. Genetic knockout of abmR in Mtb increased abmR promoter activity and eliminated growth phase-dependent increases in mcr11 expression during hypoxia. Mutagenesis identified arginine residues in the carboxy terminus that are critical for AbmR's DNA-binding activity and gene regulatory function. Limited similarity to other DNA- or ATP-binding domains suggests that AbmR belongs to a novel class of DNA- and ATP-binding proteins. AbmR was also found to form large organized structures in solution and facilitate the serum-dependent association of Mtb with human lung epithelial cells. These results indicate a potentially complex role for AbmR in Mtb biology.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Mycobacterium tuberculosis/genética , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/metabolismo , Aderência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genes Reguladores , Regiões Promotoras Genéticas , Ligação Proteica
8.
Mol Microbiol ; 105(2): 294-308, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28464471

RESUMO

Mycobacterium tuberculosis (Mtb) uses a complex 3', 5'-cyclic AMP (cAMP) signaling network to sense and respond to changing environments encountered during infection, so perturbation of cAMP signaling might be leveraged to disrupt Mtb pathogenesis. However, understanding of cAMP signaling pathways is hindered by the presence of at least 15 distinct adenylyl cyclases (ACs). Recently, the small molecule V-58 was shown to inhibit Mtb replication within macrophages and stimulate cAMP production in Mtb. Here we determined that V-58 rapidly and directly activates Mtb AC Rv1625c to produce high levels of cAMP regardless of the bacterial environment or growth medium. Metabolic inhibition by V-58 was carbon source dependent in Mtb and did not occur in Mycobacterium smegmatis, suggesting that V-58-mediated growth inhibition is due to interference with specific Mtb metabolic pathways rather than a generalized cAMP toxicity. Chemical stimulation of cAMP production by Mtb within macrophages also caused down regulation of TNF-α production by the macrophages, indicating a complex role for cAMP in Mtb pathogenesis. Together these studies describe a novel approach for targeted stimulation of cAMP production in Mtb, and provide new insights into the myriad roles of cAMP signaling in Mtb, particularly during Mtb's interactions with macrophages.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Macrófagos/microbiologia , Mycobacterium smegmatis/metabolismo , Transdução de Sinais
9.
Nucleic Acids Res ; 44(1): 134-51, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26358810

RESUMO

Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ~200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Bovinos , Imunoprecipitação da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 43(11): 5377-93, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25940627

RESUMO

Bacterial pathogens adapt to changing environments within their hosts, and the signaling molecule adenosine 3', 5'-cyclic monophosphate (cAMP) facilitates this process. In this study, we characterized in vivo DNA binding and gene regulation by the cAMP-responsive protein CRP in M. bovis BCG as a model for tuberculosis (TB)-complex bacteria. Chromatin immunoprecipitation followed by deep-sequencing (ChIP-seq) showed that CRP associates with ∼900 DNA binding regions, most of which occur within genes. The most highly enriched binding region was upstream of a putative copper transporter gene (ctpB), and crp-deleted bacteria showed increased sensitivity to copper toxicity. Detailed mutational analysis of four CRP binding sites upstream of the virulence-associated Rv0249c-Rv0247c succinate dehydrogenase genes demonstrated that CRP directly regulates Rv0249c-Rv0247c expression from two promoters, one of which requires sequences intragenic to Rv0250c for maximum expression. The high percentage of intragenic CRP binding sites and our demonstration that these intragenic DNA sequences significantly contribute to biologically relevant gene expression greatly expand the genome space that must be considered for gene regulatory analyses in mycobacteria. These findings also have practical implications for an important bacterial pathogen in which identification of mutations that affect expression of drug target-related genes is widely used for rapid drug resistance screening.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium bovis/genética , Succinato Desidrogenase/genética , Sítios de Ligação , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Regiões Promotoras Genéticas , Regulon
11.
Antimicrob Agents Chemother ; 60(5): 2757-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902758

RESUMO

Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of "database filtering" bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 µM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Biologia Computacional/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
12.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659745

RESUMO

The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.

13.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562708

RESUMO

Background: In the earliest days of COVID-19 pandemic, the collection of dried blood spots (DBS) enabled public health laboratories to undertake population-scale seroprevalence studies to estimate rates of SARS-CoV-2 exposure. With SARS-CoV-2 seropositivity levels now estimated to exceed 94% in the United States, attention has turned to using DBS to assess functional (neutralizing) antibodies within cohorts of interest. Methods: Contrived DBS eluates from convalescent, fully vaccinated and pre-COVID-19 serum samples were evaluated in SARS-CoV-2 plaque reduction neutralization titer (PRNT) assays, a SARS-CoV-2 specific 8-plex microsphere immunoassay, a cell-based pseudovirus assay, and two different spike-ACE2 inhibition assays, an in-house Luminex-based RBD-ACE2 inhibition assay and a commercial real-time PCR-based inhibition assay (NAB-Sure™). Results: DBS eluates from convalescent individuals were compatible with the spike-ACE2 inhibition assays, but not cell-based pseudovirus assays or PRNT. However, the insensitivity of cell-based pseudovirus assays was overcome with DBS eluates from vaccinated individuals with high SARS-CoV-2 antibody titers. Conclusion: SARS-CoV-2 neutralizing titers can be derived with confidence from DBS eluates, thereby opening the door to the use of these biospecimens for the analysis of vulnerable populations and normally hard to reach communities.

14.
RNA Biol ; 10(3): 397-405, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23324607

RESUMO

Yersinia pestis, the etiologic agent of plague, is closely related to Yersinia pseudotuberculosis evolutionarily but has a very different mode of infection. The RNA-binding regulatory protein, Hfq, mediates regulation by small RNAs (sRNAs) and is required for virulence of both Y. pestis and Y. pseudotuberculosis. Moreover, Hfq is required for growth of Y. pestis, but not Y. pseudotuberculosis, at 37°C. Together, these observations suggest that sRNAs play important roles in the virulence and survival of Y. pestis, and that regulation by sRNAs may account for some of the differences between Y. pestis and Y. pseudotuberculosis. We have used a deep sequencing approach to identify 31 sRNAs in Y. pestis. The majority of these sRNAs are not conserved outside the Yersiniae. Expression of the sRNAs was confirmed by Northern analysis and we developed deep sequencing approaches to map 5' and 3' ends of many sRNAs simultaneously. Expression of the majority of the sRNAs we identified is dependent upon Hfq. We also observed temperature-dependent effects on the expression of many sRNAs, and differences in expression patterns between Y. pestis and Y. pseudotuberculosis. Thus, our data suggest that regulation by sRNAs plays an important role in the lifestyle switch from flea to mammalian host, and that regulation by sRNAs may contribute to the phenotypic differences between Y. pestis and Y. pseudotuberculosis.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Adaptação Fisiológica , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , RNA Bacteriano/metabolismo , Homologia de Sequência , Sifonápteros/microbiologia , Temperatura , Fatores de Virulência , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade
15.
Mol Microbiol ; 82(1): 180-98, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21902733

RESUMO

Mycobacterium tuberculosis CRP(Mt), encoded by Rv3676 (crp), is a CRP-like transcription factor that binds with the serC-Rv0885 intergenic region. In the present study, we evaluated CRP(Mt) 's regulation of serC and Rv0885 in M. tuberculosis and M. bovis BCG, using site-specific mutagenesis, promoter fusions and reverse-transcriptase PCR (RT-PCR). The CRP(Mt) binding site was required for full expression of serC and Rv0885, and expression of both genes was reduced in M. tuberculosis and M. bovis BCG crp mutants. These data show that CRP(Mt) binding directly activates both serC and Rv0885 expression. M. tuberculosis serC restored the ability of an Escherichia coli serC mutant to grow in serine-dropout medium, demonstrating that M. tuberculosis serC encodes a phosphoserine aminotransferase. Serine supplementation, or overexpression of serC, accelerated the growth of M. tuberculosis and M. bovis BCG crp mutants in mycomedium, but not within macrophages. These results establish a role for CRP(Mt) in the regulation of amino acid biosynthesis, and show that reduced serine production contributes to the slow-growth phenotype of M. tuberculosis and M. bovis BCG crp mutants in vitro. Restoration of serine biosynthesis by serC expression will facilitate identification of additional CRP(Mt)-regulated factors required by M. tuberculosis during macrophage and host infection.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Serina/biossíntese , Transaminases/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/genética , Humanos , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Ligação Proteica , Transaminases/genética , Tuberculose/microbiologia
16.
Cell Microbiol ; 13(3): 349-58, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199259

RESUMO

cAMP is an ancient second messenger, and is used by many organisms to regulate a wide range of cellular functions. Mycobacterium tuberculosis complex bacteria are exceptional in that they have genes for at least 15 biochemically distinct adenylyl cyclases, the enzymes that generate cAMP. cAMP-associated gene regulation within tubercle bacilli is required for their virulence, and secretion of cAMP produced by M. tuberculosis bacteria into host macrophages disrupts the host's immune response to infection. In this review, we discuss recent advances in our understanding of the means by which cAMP levels are controlled within mycobacteria, the importance of cAMP to M. tuberculosis during host infection, and the role of cAMP in mycobacterial gene regulation. Understanding the myriad aspects of cAMP signalling in tubercle bacilli will establish new paradigms for cAMP signalling, and may contribute to new approaches for prevention and/or treatment of tuberculosis disease.


Assuntos
Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Tuberculose/microbiologia , Adenilil Ciclases/química , Adenilil Ciclases/genética , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Transdução de Sinais , Virulência
17.
Nucleic Acids Res ; 38(12): 4067-78, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181675

RESUMO

Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world's most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed.


Assuntos
Mycobacterium bovis/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , RNA Bacteriano/metabolismo , RNA não Traduzido/metabolismo , Clonagem Molecular , Evolução Molecular , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/análise , RNA não Traduzido/análise
18.
Clin Immunol Commun ; 2: 57-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38620871

RESUMO

Convalescent plasma (CP) has been the first line of defense against numerous infectious diseases throughout history. The COVID-19 pandemic created a need for a quick, easily accessible, and effective treatment for severe disease and CP was able to meet that immediate need. The utility of CP warrants a better understanding of the pharmacokinetics of CP treatment. Here we present the case of a COVID-19 patient with a genetic deficiency in antibody production who received CP as a part of the treatment regimen. In depth serological analysis revealed a surprising lack of SARS-CoV-2 specific antibodies and reduced serum IgG following CP infusion. Our study highlights plasma dilution and accelerated antibody clearance as potential mechanisms for the variable efficacy of CP therapy.

19.
J Glob Antimicrob Resist ; 28: 249-253, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085792

RESUMO

OBJECTIVES: Over the past decade, daptomycin treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections has led to the emergence of daptomycin nonsusceptible (DAP-NS) MRSA strains and a subsequent interest in combinatorial antibiotic therapies. We investigated the phenotypic and genetic changes associated with the seesaw effect, which describes the correlation between daptomycin resistance and increased ß-lactam susceptibility in DAP-NS MRSA and the reverse phenomenon of DAP-NS strains acquiring renewed susceptibility to daptomycin after ß-lactam exposure. METHODS: A continuous bioreactor model was used to study the effects of incremental doses of daptomycin followed by oxacillin on MRSA strain N315. Minimum inhibitory concentrations for daptomycin and oxacillin were determined for the bioreactor-derived samples. Transmission electron microscopy and cytochrome C binding assays were used to measure cell wall thickness and cell membrane charge, respectively, in the bioreactor-derived samples. Whole-genome sequencing was used to identify mutations associated with the seesaw effect. RESULTS: Although daptomycin resistance conferred enhanced susceptibility to oxacillin, oxacillin treatment of DAP-NS strains was accompanied by a lowered minimum inhibitory concentration for daptomycin. Additionally, there was a reduction in relative positive cell surface charge and cell wall thickness. However, the mutations acquired in our DAP-NS populations were not accompanied by additional genomic changes after treatment with oxacillin, implicating alternative mechanisms for the seesaw effect. CONCLUSION: In this study, we successfully produced and characterized the seesaw effect in MRSA strain N315 in a unique bioreactor model.


Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Reatores Biológicos , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Oxacilina/farmacologia , beta-Lactamas/farmacologia
20.
Front Immunol ; 13: 995412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172366

RESUMO

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Assuntos
COVID-19 , Imunoglobulina A , SARS-CoV-2 , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Antivirais/farmacologia , Epitopos/química , Humanos , Imunoglobulina A/farmacologia , Imunoglobulina G , Camundongos , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA