Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 494(7437): 366-70, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23389445

RESUMO

Several mutations are required for cancer development, and genome sequencing has revealed that many cancers, including breast cancer, have somatic mutation spectra dominated by C-to-T transitions. Most of these mutations occur at hydrolytically disfavoured non-methylated cytosines throughout the genome, and are sometimes clustered. Here we show that the DNA cytosine deaminase APOBEC3B is a probable source of these mutations. APOBEC3B messenger RNA is upregulated in most primary breast tumours and breast cancer cell lines. Tumours that express high levels of APOBEC3B have twice as many mutations as those that express low levels and are more likely to have mutations in TP53. Endogenous APOBEC3B protein is predominantly nuclear and the only detectable source of DNA C-to-U editing activity in breast cancer cell-line extracts. Knockdown experiments show that endogenous APOBEC3B correlates with increased levels of genomic uracil, increased mutation frequencies, and C-to-T transitions. Furthermore, induced APOBEC3B overexpression causes cell cycle deviations, cell death, DNA fragmentation, γ-H2AX accumulation and C-to-T mutations. Our data suggest a model in which APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers that could select TP53 inactivation and explain how some tumours evolve rapidly and manifest heterogeneity.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Citidina Desaminase/metabolismo , Mutagênese , Mutação Puntual , Sequência de Bases , Biocatálise , Neoplasias da Mama/patologia , Morte Celular , Linhagem Celular Tumoral , Citidina Desaminase/genética , Dano ao DNA/genética , Fragmentação do DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Desaminação , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor , Mutagênese/genética , Fenótipo , Mutação Puntual/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Uracila/metabolismo
2.
Elife ; 92020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985974

RESUMO

APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.


Assuntos
Citidina Desaminase/genética , Fatores de Transcrição E2F/genética , Antígenos de Histocompatibilidade Menor/genética , Transdução de Sinais , Citidina Desaminase/metabolismo , Fatores de Transcrição E2F/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica
3.
Cancer Res ; 75(21): 4538-47, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26420215

RESUMO

Overexpression of the antiviral DNA cytosine deaminase APOBEC3B has been linked to somatic mutagenesis in many cancers. Human papillomavirus infection accounts for APOBEC3B upregulation in cervical and head/neck cancers, but the mechanisms underlying nonviral malignancies are unclear. In this study, we investigated the signal transduction pathways responsible for APOBEC3B upregulation. Activation of protein kinase C (PKC) by the diacylglycerol mimic phorbol-myristic acid resulted in specific and dose-responsive increases in APOBEC3B expression and activity, which could then be strongly suppressed by PKC or NF-κB inhibition. PKC activation caused the recruitment of RELB, but not RELA, to the APOBEC3B promoter, implicating noncanonical NF-κB signaling. Notably, PKC was required for APOBEC3B upregulation in cancer cell lines derived from multiple tumor types. By revealing how APOBEC3B is upregulated in many cancers, our findings suggest that PKC and NF-κB inhibitors may be repositioned to suppress cancer mutagenesis, dampen tumor evolution, and decrease the probability of adverse outcomes, such as drug resistance and metastasis.


Assuntos
Citidina Desaminase/biossíntese , Neoplasias/metabolismo , Proteína Quinase C/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/metabolismo , Linhagem Celular Tumoral , Citidina Desaminase/genética , Humanos , Antígenos de Histocompatibilidade Menor , Subunidade p50 de NF-kappa B/biossíntese , Subunidade p52 de NF-kappa B/biossíntese , Neoplasias/genética , Infecções por Papillomavirus/patologia , Regiões Promotoras Genéticas/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Transdução de Sinais , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelB/antagonistas & inibidores , Ativação Transcricional
4.
J Mol Biol ; 426(6): 1296-307, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24361275

RESUMO

APOBEC3G belongs to a family of DNA cytosine deaminases that are involved in the restriction of a broad number of retroviruses including human immunodeficiency virus type 1 (HIV-1). Prior studies have identified two distinct mechanistic steps in Vif-deficient HIV-1 restriction: packaging into virions and deaminating viral cDNA. APOBEC3A, for example, although highly active, is not packaged and is therefore not restrictive. APOBEC3G, on the other hand, although having weaker enzymatic activity, is packaged into virions and is strongly restrictive. Although a number of studies have described the propensity for APOBEC3 oligomerization, its relevance to HIV-1 restriction remains unclear. Here, we address this problem by examining APOBEC3 oligomerization in living cells using molecular brightness analysis. We find that APOBEC3G forms high-order multimers as a function of protein concentration. In contrast, APOBEC3A, APOBEC3C and APOBEC2 are monomers at all tested concentrations. Among other members of the APOBEC3 family, we show that the multimerization propensities of APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3H (haplotype II) bear more resemblance to APOBEC3G than to APOBEC3A/3C/2. Prior studies have shown that all of these multimerizing APOBEC3 proteins, but not the monomeric family members, have the capacity to package into HIV-1 particles and restrict viral infectivity. This correlation between oligomerization and restriction is further evidenced by two different APOBEC3G mutants, which are each compromised for multimerization, packaging and HIV-1 restriction. Overall, our results imply that multimerization of APOBEC3 proteins may be related to the packaging mechanism and ultimately to virus restriction.


Assuntos
Citosina Desaminase/química , Infecções por HIV/imunologia , HIV-1/fisiologia , Montagem de Vírus/fisiologia , Replicação Viral/imunologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/deficiência , Desaminases APOBEC , Citidina Desaminase , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Células HeLa , Humanos , Multimerização Proteica , Vírion/metabolismo
5.
Virology ; 441(1): 31-9, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23542011

RESUMO

APOBEC3B is one of seven human APOBEC3 DNA cytosine deaminases that function to inhibit the replication and persistence of retroelements and retroviruses. Human APOBEC3B restricts the replication of HIV-1 in HEK293 cells, while our laboratory clone of rhesus macaque APOBEC3B did not. We mapped the restriction determinant to a single amino acid difference that alters enzymatic activity. Human APOBEC3B D316 is catalytically active and capable of restricting HIV-1 while rhesus APOBEC3B N316 is not; swapping these residues alters the activity and restriction phenotypes respectively. Genotyping of primate center rhesus macaques revealed uniform homozygosity for aspartate at position 316. Considering the C-to-T nature of the underlying mutation, we suspect that our rhesus APOBEC3B cDNA was inactivated by its own gene product during subcloning in Escherichia coli. This region has been previously characterized for its role in substrate specificity, but these data indicate it also has a fundamental role in deaminase activity.


Assuntos
Citidina Desaminase/metabolismo , HIV-1/imunologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Análise Mutacional de DNA , Genótipo , Humanos , Macaca mulatta , Mutação Puntual
6.
Structure ; 21(6): 1042-50, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23685212

RESUMO

Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2. Residues identified to be critical for Vif-dependent degradation of APOBEC3F all fit within a predominantly negatively charged contiguous region on the surface of A3F-CTD. Specific sequence motifs, previously shown to play a role in Vif susceptibility and virion encapsidation, are conserved across APOBEC3s and between APOBEC3s and HIV-1 Vif. In this structure these motifs pack against each other at intermolecular interfaces, providing potential insights both into APOBEC3 oligomerization and Vif interactions.


Assuntos
Citosina Desaminase/metabolismo , HIV-1/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Catálise , Cristalografia por Raios X , Citosina Desaminase/química , Modelos Moleculares , Conformação Proteica
7.
AIDS Res Hum Retroviruses ; 28(12): 1543-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22725134

RESUMO

Human immunodeficiency virus type 1 (HIV-1) requires the cellular transcription factor core binding factor subunit ß (CBFß) to stabilize its viral infectivity factor (Vif) protein and neutralize the APOBEC3 restriction factors. CBFß normally heterodimerizes with the RUNX family of transcription factors, enhancing their stability and DNA-binding affinity. To test the hypothesis that Vif may act as a RUNX mimic to bind CBFß, we generated a series of CBFß mutants at the RUNX/CBFß interface and tested their ability to stabilize Vif and impact transcription at a RUNX-dependent promoter. While several CBFß amino acid substitutions disrupted promoter activity, none of these impacted the ability of CBFß to stabilize Vif or enhance degradation of APOBEC3G. A mutagenesis screen of CBFß surface residues identified a single amino acid change, F68D, that disrupted Vif binding and its ability to degrade APOBEC3G. This mutant still bound RUNX and stimulated RUNX-dependent transcription. These separation-of-function mutants demonstrate that HIV-1 Vif and the RUNX transcription factors interact with cellular CBFß on genetically distinct surfaces.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Citidina Desaminase/metabolismo , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Substituição de Aminoácidos , Subunidade beta de Fator de Ligação ao Core/genética , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA