Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165178

RESUMO

Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.


Assuntos
Ecossistema , Rios , Carbono/metabolismo , Luz , Estações do Ano , Temperatura , Tempo (Meteorologia)
2.
Glob Chang Biol ; 28(15): 4633-4654, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543027

RESUMO

While tropical cyclone regimes are shifting with climate change, the mechanisms underpinning the resistance (ability to withstand disturbance-induced change) and resilience (capacity to return to pre-disturbance reference) of tropical forest litterfall to cyclones remain largely unexplored pantropically. Single-site studies in Australia and Hawaii suggest that litterfall on low-phosphorus (P) soils is more resistant and less resilient to cyclones. We conducted a meta-analysis to investigate the pantropical importance of total soil P in mediating forest litterfall resistance and resilience to 22 tropical cyclones. We evaluated cyclone-induced and post-cyclone litterfall mass (g/m2 /day), and P and nitrogen (N) fluxes (mg/m2 /day) and concentrations (mg/g), all indicators of ecosystem function and essential for nutrient cycling. Across 73 case studies in Australia, Guadeloupe, Hawaii, Mexico, Puerto Rico, and Taiwan, total litterfall mass flux increased from ~2.5 ± 0.3 to 22.5 ± 3 g/m2 /day due to cyclones, with large variation among studies. Litterfall P and N fluxes post-cyclone represented ~5% and 10% of the average annual fluxes, respectively. Post-cyclone leaf litterfall N and P concentrations were 21.6 ± 1.2% and 58.6 ± 2.3% higher than pre-cyclone means. Mixed-effects models determined that soil P negatively moderated the pantropical litterfall resistance to cyclones, with a 100 mg P/kg increase in soil P corresponding to a 32% to 38% decrease in resistance. Based on 33% of the resistance case studies, total litterfall mass flux reached pre-disturbance levels within one-year post-disturbance. A GAMM indicated that soil P, gale wind duration and time post-cyclone jointly moderate the short-term resilience of total litterfall, with the nature of the relationship between resilience and soil P contingent on time and wind duration. Across pantropical forests observed to date, our results indicate that litterfall resistance and resilience in the face of intensifying cyclones will be partially determined by total soil P.


Assuntos
Tempestades Ciclônicas , Fósforo , Ecossistema , Florestas , Solo , Árvores
3.
Glob Chang Biol ; 28(24): 7270-7285, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36176238

RESUMO

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.


Assuntos
Nitratos , Óxido Nitroso , Óxido Nitroso/análise , Nitratos/análise , Matéria Orgânica Dissolvida , Monitoramento Ambiental , Rios
4.
Glob Chang Biol ; 28(1): 98-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706120

RESUMO

Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.


Assuntos
Matéria Orgânica Dissolvida , Rios , Carbono , Ecossistema , Nitrogênio/análise
5.
Environ Sci Technol ; 56(3): 2009-2020, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007420

RESUMO

Anthropogenic land use has increased nutrient concentrations and altered dissolved organic matter (DOM) character and its bioavailability. Despite widespread recognition that DOM character and its reactivity can vary temporally, the relative influence of land use and stream order on DOM characteristics is poorly understood across seasons and the entire flow regime. We examined DOM character and 28-day bioavailable dissolved organic carbon (BDOC) across a river network to determine the relative roles of land use and stream order in driving variability in DOM character and bioavailability throughout the year. DOM in 1st-order streams was distinct from higher stream orders with lower DOC concentrations, less aromatic (specific ultraviolet absorbance at 254 nm (SUVA254)), more autochthonous (fluorescence index), and more recently produced (ß/α) DOM. Across all months, variability in DOM character was primarily explained by land use, rather than stream order or season. Land use and stream order explained the most DOM variation in transitional and winter months and the least during dry months. BDOC was greater in watersheds with less aromatic (SUVA254) and more recent allochthonous DOM (ß/α) and more development and impervious surface. With continued development, the bioavailability of DOM in the smallest and most impacted watersheds is expected to increase.


Assuntos
Matéria Orgânica Dissolvida , Rios , Estações do Ano
6.
Environ Sci Technol ; 55(12): 8422-8431, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018725

RESUMO

Inland waters are significant sources of nitrous oxide (N2O), a powerful greenhouse gas. However, considerable uncertainty exists in the estimates of N2O efflux from global inland waters due to a lack of direct measurements in urban inland waters, which are generally characterized by high carbon and nitrogen concentrations and low carbon-to-nitrogen ratios. Herein, we present direct measurements of N2O concentrations and fluxes in lakes and rivers of Beijing, China, during 2018-2020. N2O concentrations and fluxes in the waters of Beijing exceeded previous estimates of global rivers due to the high carbon and nutrient concentrations and high aquatic productivity. In contrast, the N2O emission factor (N2O-N/DIN, median 0.0005) was lower than global medians and the N2O yield (ΔN2O/(ΔN2O + ΔN2), average 1.6%) was higher than those typically observed in rivers and streams. The positive relationship between N2O emissions and denitrifying bacteria as well as the Michaelis-Menten relationship between N2O emissions and NO3--N concentrations suggested that bacteria control the net production of N2O in waters of Beijing with N saturation, leading to a low N2O emission factor. However, low carbon-to-nitrogen ratios are beneficial for N2O accumulation during denitrification, resulting in high N2O yields. This study demonstrates the significant N2O emissions and their distinctive patterns and controls in urban inland waters and suggests that N2O emission estimates based on nitrogen loads and simple emission factor values are not appropriate for urban inland water systems.


Assuntos
Óxido Nitroso , Rios , Pequim , China , Lagos , Óxido Nitroso/análise
7.
PLoS Genet ; 13(6): e1006771, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640831

RESUMO

Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments.


Assuntos
Variações do Número de Cópias de DNA , Leucemia/genética , RNA Ribossômico/genética , Animais , Células Cultivadas , Dano ao DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Ecotoxicology ; 29(8): 1207-1220, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31643013

RESUMO

At a "clean air" trade winds site in northeastern Puerto Rico, we found an apparent paradox: atmospheric total mercury (THg) deposition was highest of any site in the USA Mercury Deposition Network, but assimilation into the local food web was quite low. Avian blood THg concentrations (n = 31, from eight species in five foraging guilds) ranged widely from 0.2 to 32 ng g-1 (median of 4.3 ng g-1). Within this population, THg was significantly greater at a low-elevation site near a wetland compared to an upland montane site, even when the comparison was limited to a single species. Overall, however, THg concentrations were approximately an order of magnitude lower than comparable populations in the continental U.S. In surface soil and sediment, potential rates of demethylation were 3 to 9-fold greater than those for Hg(II)-methylation (based on six radiotracer amendment incubations), but rates of change of ambient MeHg pools showed a slight net positive Hg(II)-methylation. Thus, the resolution of the paradox is that MeHg degradation approximately keeps pace with MeHg production in this landscape. Further, any net production of MeHg is subject to frequent flushing by high rainfall on chronically wet soils. The interplay of these microbial processes and hydrology appears to shield the local food web from adverse effects of high atmospheric mercury loading. This scenario may play out in other humid tropical ecosystems as well, but it is difficult to evaluate because coordinated studies of Hg deposition, methylation, and trophic uptake have not been conducted at other tropical sites.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Mercúrio/análise , Porto Rico
9.
Ecol Appl ; 29(2): e01839, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578700

RESUMO

Nutrient inputs to surface waters are particularly varied in urban areas, due to multiple nutrient sources and complex hydrologic pathways. Because of their close proximity to coastal waters, nutrient delivery from many urban areas can have profound impacts on coastal ecology. Relatively little is known about the temporal and spatial variability in stoichiometry of inorganic nutrients such as dissolved silica, nitrogen, and phosphorus (Si, N, and P) and dissolved organic matter in tropical urban environments. We examined nutrient stoichiometry of both inorganic nutrients and organic matter in an urban watershed in Puerto Rico served by municipal sanitary sewers and compared it to two nearby forested catchments using samples collected weekly from each river for 6 yr. Urbanization caused large increases in the concentration and flux of nitrogen and phosphorus (2- to 50-fold), but surprisingly little change in N:P ratio. Concentrations of almost all major ions and dissolved silica were also significantly higher in the urban river than the wildland rivers. Yield of dissolved organic carbon (DOC) was not increased dramatically by urbanization, but the composition of dissolved organic matter shifted toward N-rich material, with a larger increase in dissolved organic nitrogen (DON) than DOC. The molar ratio of DOC:DON was about 40 in rivers draining forested catchments but was only 10 in the urban river. Inclusion of Si in the assessment of urbanization's impacts reveals a large shift in the stoichiometry (Si:N and Si:P) of nutrient inputs. Because both Si concentrations and watershed exports are high in streams and rivers from many humid tropical catchments with siliceous bedrock, even the large increases in N and P exported from urban catchments result in delivery of Si, N, and P to coastal waters in stoichiometric ratios that are well in excess of the Si requirements of marine diatoms. Our data suggest that dissolved Si, often neglected in watershed biogeochemistry, should be included in studies of urban as well as less developed watersheds due to its potential significance for marine and lacustrine productivity.


Assuntos
Nutrientes , Rios , Monitoramento Ambiental , Nitrogênio , Porto Rico
10.
Genome Res ; 25(8): 1229-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025802

RESUMO

The clustered Hox genes, which are highly conserved across metazoans, encode homeodomain-containing transcription factors that provide a blueprint for segmental identity along the body axis. Recent studies have underscored that in addition to encoding Hox genes, the homeotic clusters contain key noncoding RNA genes that play a central role in development. In this study, we have taken advantage of genome-wide approaches to provide a detailed analysis of retinoic acid (RA)-induced transcriptional and epigenetic changes within the homeotic clusters of mouse embryonic stem cells. Although there is a general colinear response, our analyses suggest a lack of strict colinearity for several genes in the HoxA and HoxB clusters. We have identified transcribed novel noncoding RNAs (ncRNAs) and their cis-regulatory elements that function in response to RA and demonstrated that the expression of these ncRNAs from both strands represent some of the most rapidly induced transcripts in ES cells. Finally, we have provided dynamic analyses of chromatin modifications for the coding and noncoding genes expressed upon activation and suggest that active transcription can occur in the presence of chromatin modifications and machineries associated with repressed transcription state over the clusters. Overall, our data provide a resource for a better understanding of the dynamic nature of the coding and noncoding transcripts and their associated chromatin marks in the regulation of homeotic gene transcription during development.


Assuntos
Epigênese Genética/efeitos dos fármacos , Proteínas de Homeodomínio/genética , RNA não Traduzido/genética , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Linhagem Celular , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Elementos Reguladores de Transcrição/efeitos dos fármacos
11.
Development ; 142(11): 2014-25, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977364

RESUMO

Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors.


Assuntos
Movimento Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Movimento Celular/genética , Embrião de Galinha , Simulação por Computador , Técnicas de Silenciamento de Genes , Crista Neural/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única
12.
Environ Sci Technol ; 52(22): 13155-13165, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30379543

RESUMO

In many temperate forested watersheds, hydrologic nitrogen export has declined substantially in recent decades, and many of these watersheds show enduring effects from historic acid deposition. A watershed acid remediation experiment in New Hampshire reversed many of these legacy effects of acid deposition and also increased watershed nitrogen export, suggesting that these two phenomena may be coupled. Here we examine stream nitrate dynamics in this watershed acid remediation experiment for indicators of nitrogen saturation in the terrestrial and aquatic ecosystems. Post-treatment, the (positive) slope of the relationship between nitrate concentration and discharge increased by a median of 82% ( p = 0.004). This resulted in greater flushing of nitrate during storm events, a key indicator of early stage nitrogen saturation. Hysteretic behavior of the concentration-discharge relationship indicated that the mobilization of soil nitrate pools was responsible for this increased flushing. In contrast to this evidence for nitrogen saturation in the terrestrial ecosystem, we found that nitrogen uptake increased, post-treatment, in the aquatic ecosystem, substantially attenuating growing-season nitrate flux by up to 71.1% ( p = 0.025). These results suggest that, as forests slowly recover from acid precipitation, terrestrial, and aquatic ecosystem nitrogen balance may be substantially altered.


Assuntos
Chuva Ácida , Ecossistema , New Hampshire , Nitratos , Nitrogênio , Rios
13.
Mol Pharmacol ; 92(1): 67-74, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416574

RESUMO

Multisite phosphorylation is required for activation of guanylyl cyclase (GC)-A, also known as NPR-A or NPR1, by cardiac natriuretic peptides (NPs). Seven chemically identified sites (Ser-487, Ser-497, Thr-500, Ser-502, Ser-506, Ser-510, and Thr-513) and one functionally identified putative site (Ser-473) were reported. Single alanine substitutions for Ser-497, Thr-500, Ser-502, Ser-506, and Ser-510 reduced maximal velocity (Vmax), whereas glutamate substitutions had no effect or increased Vmax Ala but not Glu substitution for Ser-497 increased the Michaelis constant (Km) approximately 400%. A GC-A mutant containing Glu substitutions for all seven chemically identified sites (GC-A-7E) had a Km approximately 10-fold higher than phosphorylated wild-type (WT) GC-A, but one additional substitution for Ser-473 to make GC-A-8E resulted in the same Vmax, Km, and EC50 as the phosphorylated WT enzyme. Adding more glutamates to make GC-A-9E or GC-A-10E had little effect on activity, and sequential deletion of individual glutamates in GC-A-8E progressively increased the Km Double Ala substitutions for Ser-497 and either Thr-500, Ser-510 or Thr-513 in WT-GC-A increased the Km 23- to 70-fold but the same mutations in GC-A-8E only increased the Km 8-fold, consistent with one site affecting the phosphorylation of other sites. Phosphate measurements confirmed that single-site Ala substitutions reduced receptor phosphate levels more than expected for the loss of a single site. We conclude that a concentrated region of negative charge, not steric properties, resulting from multiple interdependent phosphorylation sites is required for a GC-A conformation capable of transmitting the hormone binding signal to the catalytic domain.


Assuntos
Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Mutação/fisiologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia
14.
Ecology ; 98(12): 3044-3055, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28881008

RESUMO

Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.


Assuntos
Cadeia Alimentar , Ciclo do Nitrogênio , Nitrogênio/análise , Rios/química , Animais , Nitrogênio/metabolismo , Isótopos de Nitrogênio
15.
Glob Chang Biol ; 23(4): 1610-1625, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27808458

RESUMO

Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year.


Assuntos
Mudança Climática , Estações do Ano , Ecossistema , New Hampshire , Neve , Temperatura
16.
Environ Monit Assess ; 189(8): 406, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28730580

RESUMO

Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.


Assuntos
DNA Mitocondrial , Monitoramento Ambiental , Rios/microbiologia , Poluição da Água/análise , Agricultura , Animais , Bactérias , Bovinos , Cães , Fezes/microbiologia , Marcadores Genéticos , Água/análise , Microbiologia da Água , Qualidade da Água
17.
Dev Biol ; 407(1): 12-25, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26278036

RESUMO

Embryonic neural crest cells travel in discrete streams to precise locations throughout the head and body. We previously showed that cranial neural crest cells respond chemotactically to vascular endothelial growth factor (VEGF) and that cells within the migratory front have distinct behaviors and gene expression. We proposed a cell-induced gradient model in which lead neural crest cells read out directional information from a chemoattractant profile and instruct trailers to follow. In this study, we show that migrating chick neural crest cells do not display distinct lead and trailer gene expression profiles in culture. However, exposure to VEGF in vitro results in the upregulation of a small subset of genes associated with an in vivo lead cell signature. Timed addition and removal of VEGF in culture reveals the changes in neural crest cell gene expression are rapid. A computational model incorporating an integrate-and-switch mechanism between cellular phenotypes predicts migration efficiency is influenced by the timescale of cell behavior switching. To test the model hypothesis that neural crest cellular phenotypes respond to changes in the VEGF chemoattractant profile, we presented ectopic sources of VEGF to the trailer neural crest cell subpopulation and show diverted cell trajectories and stream alterations consistent with model predictions. Gene profiling of trailer cells that diverted and encountered VEGF revealed upregulation of a subset of 'lead' genes. Injection of neuropilin1 (Np1)-Fc into the trailer subpopulation or electroporation of VEGF morpholino to reduce VEGF signaling failed to alter trailer neural crest cell trajectories, suggesting trailers do not require VEGF to maintain coordinated migration. These results indicate that VEGF is one of the signals that establishes lead cell identity and its chemoattractant profile is critical to neural crest cell migration.


Assuntos
Crista Neural/citologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Movimento Celular , Microambiente Celular , Quimiotaxia , Embrião de Galinha , Simulação por Computador , Regulação da Expressão Gênica no Desenvolvimento
19.
Mol Pharm ; 12(6): 1872-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25894424

RESUMO

The conjugation of monomethyl auristatin E (MMAE) to trastuzumab using a reduction bis-alkylation approach that is capable of rebridging reduced (native) antibody interchain disulfide bonds has been previously shown to produce a homogeneous and stable conjugate with a drug-to-antibody ratio (DAR) of 4 as the major product. Here, we further investigate the potency of the DAR 4 conjugates prepared by bis-alkylation by comparing to lower drug loaded variants to maleimide linker based conjugates possessing typical mixed DAR profiles. Serum stability, HER2 receptor binding, internalization, in vitro potency, and in vivo efficacy were all evaluated. Greater stability compared with maleimide conjugation was observed with no significant decrease in receptor/FcRn binding. A clear dose-response was obtained based on drug loading (DAR) with the DAR 4 conjugate showing the highest potency in vitro and a much higher efficacy in vivo compared with the lower DAR conjugates. Finally, the DAR 4 conjugate demonstrated superior efficacy compared to trastuzumab-DM1 (T-DM1, Kadcyla), as evaluated in a low HER2 expressing JIMT-1 xenograft model.


Assuntos
Cisteína/química , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Trastuzumab/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS Genet ; 8(6): e1002749, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719263

RESUMO

Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and (35)S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Anormalidades Craniofaciais , Ectromelia , Hipertelorismo , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Ectromelia/genética , Ectromelia/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Polirribossomos/genética , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA