Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(4): 1573-1584, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662650

RESUMO

Recent strategies developed to examine the nucleation of crystal structures like tetrahydrofuran (THF) hydrates without the effects of a solid interface have included acoustic levitation, where only a liquid-gas interface initially exists. However, the ability now exists to levitate and freeze multiple droplets simultaneously, which could reveal interdroplet effects and provide further insight into interfacial nucleation phenomena. In this study, using direct digital and infrared imaging techniques, the freezing of up to three simultaneous THF hydrate droplets was investigated for the first time. Nucleation was initiated at the aqueous solution-air interface. Two pseudo-heterogeneous mechanisms created additional nucleation interfaces: one from cavitation effects entraining microbubbles and another from subvisible ice particles, also called hydrate-nucleating particles (HNPs), impacting the droplet surface. For systems containing droplets in both the second and third positions, nucleation was statistically simultaneous between all droplets. This effect may have been caused by the high liquid-solid interfacial pressures that developed at nucleation, causing some cracking in the initial hydrate shell around the droplet and releasing additional HNPs (now of hydrate) into the air. During crystallization, the THF hydrate droplets developed a completely white opacity, termed optical clarity loss (OCL). It was suggested that high hydrate growth rates within the droplet resulted in the capture of tiny air bubbles within the solid phase. In turn, light refraction through many smaller bubbles resulted in the OCL. These bubbles created structural inhomogeneities, which may explain how the volumetric expansion of the droplets upon complete solidification was 23.6% compared with 7.4% in pure, stationary THF hydrate systems. Finally, the thermal gradient that developed between the top and bottom of the droplet during melting resulted in a surface tension gradient along the air-liquid interface. In turn, convective cells developed within the droplet, causing it to spin rapidly about the horizontal axis.

2.
Nanotechnology ; 31(45): 455703, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32731208

RESUMO

Emerging nanofluid-based technologies for cooling, transport, and storage applications have previously been enhanced through the use of graphene nanoflake (GNF) nanofluids. Many of the beneficial effects of GNFs have now been documented, though little work has yet been completed to characterize the morphological behaviour of GNF nanofluids both during and after the phase change process. In this study, the crystallization behaviour of sessile water droplets was evaluated for two plasma-functionalized, hydrophilic GNF concentrations (20 and 100 ppm) at three driving force temperatures (-5 °C, -10 °C, and -20 °C). At low driving forces, the GNFs were wholly expelled from the solid matrix due to low crystallization velocities. At high driving forces, more rapid crystallization rates resulted in the entrapment of GNFs within the air bubbles and inter-dendritic spaces of the solid droplet. However, individual particle dispersion was not achieved within the solid matrix at any driving force. Furthermore, for all experimental conditions, the functionalized GNF clusters which formed during freezing did not disperse spontaneously upon melting as drying-like effects may have altered the attraction properties of their surfaces and destabilized the suspension. Compared to previous studies using multi-walled carbon nanotubes, the GNFs were found to have higher liquid mobility at the solid front, provide less resistance to that front as it ascended, and be better dispersed after melting. These effects may have been geometrical; the square nanoflake geometry does not result in any physical particle entanglement.

3.
Nanoscale ; 14(28): 10211-10225, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35797700

RESUMO

The viscosity of oxygen-functionalized multi-walled carbon nanotube (O-MWCNT) nanofluids was measured for concentrations from 0.1 to 10 ppm under conditions of 0 to 30 MPag pressures and 0 to 10 °C temperatures. The presence of O-MWCNTs did not affect the temperature dependence of viscosity but did reduce the effective viscosity of solution due to cumulative hydrogen bond-disrupting surface effects, which overcame internal drag forces. O-MWCNTs added a weak pressure dependence to the viscosity of solution because of their ability to align more with the flow direction as pressure increased. In the liquid to hydrate phase transition, the times to reach the maximum viscosity were faster in O-MWCNT systems compared to the pure water baseline. However, the presence of O-MWCNTs limited the conditions at which hydrates formed as increased nanoparticle collisions in those systems inhibited the formation of critical clusters of hydrate nuclei. The times to viscosity values most relevant to technological applications were minimally 28.02% (200 mPa s) and 21.08% (500 mPa s) slower than the baseline, both in the 1 ppm system, even though all systems were faster to the final viscosity. This was attributed to O-MWCNT entanglement, which resulted in a hydrate slurry occurring at lower viscosity values.

4.
J Colloid Interface Sci ; 619: 84-95, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378478

RESUMO

HYPOTHESIS: Understanding the crystallization of atmospheric water can require levitation techniques to avoid the influence of container walls. Recently, an acoustic levitation device called the TinyLev was designed, which can levitate multiple droplets at room temperature. Proximal crystallization may affect droplet phase change and morphological characteristics. METHODOLOGY: In this study, acoustically levitated pure water droplets were frozen individually and in pairs or triplets using a TinyLev device. Nucleation, bulk crystal growth, and melting were observed using digital and infrared cameras concurrently. FINDINGS: Initially, the acoustic field forced the droplets into an oblate spheroid shape, though the counteracting force of the cooling stream caused them to circularize. Droplet geometry was thus the net result of streaming forces and surface tension at the acoustic boundary layer/air-liquid interface. Nucleation was determined to be neither homogeneous nor heterogeneous but secondary, and thus dependent on the cooling rate and not on the degree of supercooling. It was likely initiated by aerosolized ice particles from the air or from droplets that had already nucleated and broken up. The latter secondary ice production process resulted in multi-drop systems with statistically identical nucleation times. Notably, this meant that the presence of interfacial rupture at an adjacent droplet could influence the crystallization behaviour of another. After the formation of an initial ice shell around the individual droplets, dendritic protrusions grew from the droplet surface, likely seeded by the same ice particles that caused nucleation, but at a quasi-liquid layer. When freezing was complete, it was determined that the frozen core had undergone a volumetric expansion of 30.75%, compared to 9% for pure, sessile water expansion. This significantly greater expansion may have resulted from entrained air bubbles at the inner solid-liquid interface and oscillations at the moving phase boundary caused by changes in local acoustic forces. Soon after melting began, acoustic streaming, the buoyancy of the remaining ice, and convective currents caused by both an inner thermal gradient and thermocapillary effects along the air-liquid interface, all contributed to the droplet spinning about the horizontal axis.


Assuntos
Gelo , Água , Cristalização , Congelamento , Transição de Fase , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA