RESUMO
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-PositivosRESUMO
The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine.
Assuntos
Genoma de Protozoário , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Animais , Evolução Biológica , Feminino , Técnicas de Inativação de Genes , Genes Essenciais , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/metabolismo , Saccharomyces cerevisiae/genética , Toxoplasma/genética , Trypanosoma brucei brucei/genéticaRESUMO
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Falciparum/genética , Eritrócitos/parasitologia , Antimaláricos/farmacologiaRESUMO
In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8+ T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Fígado/imunologia , Malária/imunologia , Animais , Linfócitos T CD8-Positivos/parasitologia , Culicidae , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Hepatócitos/imunologia , Hepatócitos/parasitologia , Fígado/parasitologia , Hepatopatias/imunologia , Hepatopatias/parasitologia , Vacinas Antimaláricas/imunologia , Camundongos , Plasmodium berghei/imunologia , Esporozoítos/imunologia , Esporozoítos/parasitologia , Vacinação/métodosRESUMO
Malaria remains a major cause of mortality in the world and an efficient vaccine is the best chance of reducing the disease burden. Vaccination strategies for the liver stage of disease that utilise injection of live radiation-attenuated sporozoites (RAS) confer sterile immunity, which is mediated by CD8+ memory T cells, with liver-resident memory T cells (TRM ) being particularly important. We have previously described a TCR transgenic mouse, termed PbT-I, where all CD8+ T cells recognize a specific peptide from Plasmodium. PbT-I form liver TRM cells upon RAS injection and are capable of protecting mice against challenge infection. Here, we utilize this transgenic system to examine whether nonliving sporozoites, killed by heat treatment (HKS), could trigger the development of Plasmodium-specific liver TRM cells. We found that HKS vaccination induced the formation of memory CD8+ T cells in the spleen and liver, and importantly, liver TRM cells were fewer in number than that induced by RAS. Crucially, we showed the number of TRM cells was significantly higher when HKS were combined with the glycolipid α-galactosylceramide as an adjuvant. In the future, this work could lead to development of an antimalaria vaccination strategy that does not require live sporozoites, providing greater utility.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/parasitologia , Plasmodium/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Parasita/imunologia , Temperatura Alta , Imunização , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Transgênicos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologiaRESUMO
Malaria parasites are diheteroxenous, requiring two hosts-a vertebrate and a mosquito-to complete their life cycle. Mosquitoes are the definitive host where malaria parasite sex occurs, and vertebrates are the intermediate host, supporting asexual amplification and more significant geographic spread. In this review, we examine the roles of a single malaria parasite compartment, the relict plastid known as the apicoplast, at each life cycle stage. We focus mainly on two malaria parasite species-Plasmodium falciparum and P. berghei-comparing the changing, yet ever crucial, roles of their apicoplasts.
Assuntos
Apicoplastos , Malária , Parasitos , Humanos , Animais , Roedores , Plasmodium falciparum/genética , Estágios do Ciclo de Vida , Proteínas de ProtozoáriosRESUMO
The algal cell wall is an important cellular component that functions in defense, nutrient utilization, signaling, adhesion, and cell-cell recognition-processes important in the cnidarian-dinoflagellate symbiosis. The cell wall of symbiodiniacean dinoflagellates is not well characterized. Here, we present a method to isolate cell walls of Symbiodiniaceae and prepare cell-wall-enriched samples for proteomic analysis. Label-free liquid chromatography-electrospray ionization tandem mass spectrometry was used to explore the surface proteome of two Symbiodiniaceae species from the Great Barrier Reef: Breviolum minutum and Cladocopium goreaui. Transporters, hydrolases, translocases, and proteins involved in cell-adhesion and protein-protein interactions were identified, but the majority of cell wall proteins had no homologues in public databases. We propose roles for some of these proteins in the cnidarian-dinoflagellate symbiosis. This work provides the first proteomics investigation of cell wall proteins in the Symbiodiniaceae and represents a basis for future explorations of the roles of cell wall proteins in Symbiodiniaceae and other dinoflagellates.
Assuntos
Cnidários , Dinoflagellida , Animais , Parede Celular , Proteoma , Proteômica , SimbioseRESUMO
Apicomplexan parasites such as Toxoplasma gondii possess an unusual heme biosynthesis pathway whose enzymes localize to the mitochondrion, cytosol, or apicoplast, a nonphotosynthetic plastid present in most apicomplexans. To characterize the involvement of the apicoplast in the T. gondii heme biosynthesis pathway, we investigated the role of the apicoplast-localized enzyme uroporphyrinogen III decarboxylase (TgUroD). We found that TgUroD knockdown impaired parasite proliferation, decreased free heme levels in the parasite, and decreased the abundance of heme-containing c-type cytochrome proteins in the parasite mitochondrion. We validated the effects of heme loss on mitochondrial cytochromes by knocking down cytochrome c/c1 heme lyase 1 (TgCCHL1), a mitochondrial enzyme that catalyzes the covalent attachment of heme to c-type cytochromes. TgCCHL1 depletion reduced parasite proliferation and decreased the abundance of c-type cytochromes. We further sought to characterize the overall importance of TgUroD and TgCCHL1 for both mitochondrial and general parasite metabolism. TgUroD depletion decreased cellular ATP levels, mitochondrial oxygen consumption, and extracellular acidification rates. By contrast, depletion of TgCCHL1 neither diminished ATP levels in the parasite nor impaired extracellular acidification rate, but resulted in specific defects in mitochondrial oxygen consumption. Together, our results indicate that the apicoplast has a key role in heme biology in T. gondii and is important for both mitochondrial and general parasite metabolism. Our study highlights the importance of heme and its synthesis in these parasites.
Assuntos
Apicoplastos/metabolismo , Heme/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Uroporfirinogênio Descarboxilase/metabolismo , Vias Biossintéticas , Heme/análise , Humanos , Mitocôndrias/metabolismo , Proteínas de Protozoários/análise , Toxoplasma/enzimologia , Toxoplasmose/parasitologia , Uroporfirinogênio Descarboxilase/análiseRESUMO
Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.
Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Purinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Purinas/síntese química , Purinas/química , Relação Estrutura-AtividadeRESUMO
Chromerids are a group of alveolates, found in corals, that show peculiar morphological and genomic features. These organisms are evolutionary placed in-between symbiotic dinoflagellates and parasitic apicomplexans. There are two known species of chromerids: Chromera velia and Vitrella brassicaformis. Here, the biochemical composition of the C. velia cell wall was analyzed. Several polysaccharides adorn this structure, with glucose being the most abundant monosaccharide (approx. 80%) and predominantly 4-linked (approx. 60%), suggesting that the chromerids cell wall is mostly cellulosic. The presence of cellulose was cytochemically confirmed with calcofluor white staining of the algal cell. The remaining wall polysaccharides, assuming structures are similar to those of higher plants, are indicative of a mixture of galactans, xyloglucans, heteroxylans, and heteromannans. The present work provides, for the first time, insights into the outermost layers of the photosynthetic alveolate C. velia.
Assuntos
Alveolados , Parede Celular , Fotossíntese , Filogenia , PolissacarídeosRESUMO
Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.
Assuntos
Biotina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Fígado/parasitologia , Malária/metabolismo , Plasmodium/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Apicoplastos/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Malária/parasitologia , Camundongos , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND: Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. RESULTS: Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. CONCLUSION: We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.
Assuntos
Antimaláricos/farmacologia , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Malária/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controleRESUMO
Apicomplexan parasites including Toxoplasma gondii and Plasmodium spp. manufacture a complex arsenal of secreted proteins used to interact with and manipulate their host environment. These proteins are organised into three principle exocytotic compartment types according to their functions: micronemes for extracellular attachment and motility, rhoptries for host cell penetration, and dense granules for subsequent manipulation of the host intracellular environment. The order and timing of these events during the parasite's invasion cycle dictates when exocytosis from each compartment occurs. Tight control of compartment secretion is, therefore, an integral part of apicomplexan biology. Control of microneme exocytosis is best understood, where cytosolic intermediate molecular messengers cGMP and Ca2+ act as positive signals. The mechanisms for controlling secretion from rhoptries and dense granules, however, are virtually unknown. Here, we present evidence that dense granule exocytosis is negatively regulated by cytosolic Ca2+ , and we show that this Ca2+ -mediated response is contingent on the function of calcium-dependent protein kinases TgCDPK1 and TgCDPK3. Reciprocal control of micronemes and dense granules provides an elegant solution to the mutually exclusive functions of these exocytotic compartments in parasite invasion cycles and further demonstrates the central role that Ca2+ signalling plays in the invasion biology of apicomplexan parasites.
Assuntos
Cálcio/metabolismo , Vesículas Citoplasmáticas/metabolismo , Organelas/metabolismo , Proteínas Quinases/metabolismo , Toxoplasma/metabolismo , Cálcio/agonistas , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Citoplasma/metabolismo , Exocitose/genética , Fibroblastos/parasitologia , Humanos , Proteínas Quinases/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/patogenicidadeRESUMO
The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC) gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.
Assuntos
Anopheles/parasitologia , Teste de Complementação Genética/métodos , Heme/biossíntese , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Anopheles/crescimento & desenvolvimento , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Estágios do Ciclo de Vida , Fígado/metabolismo , Masculino , Camundongos , Plasmodium berghei/enzimologia , Plasmodium berghei/genética , Proteínas de Protozoários/genéticaRESUMO
The malaria-causing parasite, Plasmodium, contains a unique non-photosynthetic plastid known as the apicoplast. The apicoplast is an essential organelle bound by four membranes. Although membrane transporters are attractive drug targets, only two transporters have been characterised in the malaria parasite apicoplast membranes. We selected 27 candidate apicoplast membrane proteins, 20 of which are annotated as putative membrane transporters, and performed a genetic screen in Plasmodium berghei to determine blood stage essentiality and subcellular localisation. Eight apparently essential blood stage genes were identified, three of which were apicoplast-localised: PbANKA_0614600 (DMT2), PbANKA_0401200 (ABCB4), and PbANKA_0505500. Nineteen candidates could be deleted at the blood stage, four of which were apicoplast-localised. Interestingly, three apicoplast-localised candidates lack a canonical apicoplast targeting signal but do contain conserved N-terminal tyrosines with likely roles in targeting. An inducible knockdown of an essential apicoplast putative membrane transporter, PfDMT2, was only viable when supplemented with isopentenyl diphosphate. Knockdown of PfDMT2 resulted in loss of the apicoplast, identifying PfDMT2 as a crucial apicoplast putative membrane transporter and a candidate for therapeutic intervention.
Assuntos
Apicoplastos/metabolismo , Proteínas de Membrana Transportadoras/genética , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Apicoplastos/genética , Transporte Biológico/genética , Técnicas de Inativação de Genes , Hemiterpenos/biossíntese , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Compostos Organofosforados , Proteínas de Protozoários/metabolismoRESUMO
We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.
Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Malária/imunologia , Camundongos Transgênicos/imunologia , Parasitemia/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Protozoários/imunologia , Antígenos CD40/deficiência , Ligante de CD40/imunologia , Células Cultivadas , Cruzamentos Genéticos , Hibridomas , Ativação Linfocitária , Malária Cerebral/imunologia , Malária Cerebral/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Plasmodium berghei/imunologia , Quimera por RadiaçãoRESUMO
Prasinophytes (Chlorophyta) are a diverse, paraphyletic group of planktonic microalgae for which benthic species are largely unknown. Here, we report a sand-dwelling, marine prasinophyte with several novel features observed in clonal cultures established from numerous locations around Australia. The new genus and species, which we name Microrhizoidea pickettheapsiorum (Mamiellophyceae), alternates between a benthic palmelloid colony, where cell division occurs, and a planktonic flagellate. Flagellates are short lived, settle and quickly resorb their flagella, the basal bodies then nucleate novel tubular appendages, termed "microrhizoids", that lack an axoneme and function to anchor benthic cells to the substratum. To our knowledge, microrhizoids have not been observed in any other green alga or protist, are slightly smaller in diameter than flagella, generally contain nine microtubules, are long (3-5 times the length of flagella) and are not encased in scales. Following settlement, cell divisions result in a loose, palmelloid colony, each cell connected to the substratum by two microrhizoids. Flagellates are round to bean-shaped with two long, slightly uneven flagella. Both benthic cells and flagellates, along with their flagella, are encased in thin scales. Phylogenies based on the complete chloroplast genome of Microrhizoidea show that it is clearly a member of the Mamiellophyceae, most closely related to Dolichomastix tenuilepsis. More taxon-rich phylogenetic analyses of the 18S rRNA gene, including metabarcodes from the Tara Oceans and Ocean Sampling Day projects, confidently show the distinctive nature of Microrhizoidea, and that the described biodiversity of the Mamiellophyceae is a fraction of its real biodiversity. The discovery of a largely benthic prasinophyte changes our perspective on this group of algae and, along with the observation of other potential benthic lineages in environmental sequences, illustrates that benthic habitats can be a rich ground for algal biodiscovery.
Assuntos
Clorófitas , Genoma de Cloroplastos , Austrália , Oceanos e Mares , FilogeniaRESUMO
Zanthoxylum zanthoxyloides, syn. Fagara zanthoxyloides, is a tree growing in West Africa and is used in traditional medicine against a variety of diseases, including malaria. In the work reported here, root bark and stem bark extracts of this tree, as well as compounds isolated from the extracts, have been investigated for activity in vitro against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. In addition, toxicity against nauplii of the brine shrimp Artemia salina has been studied. Dichloromethane extracts of the root bark and stem bark, and a methanol extract of the stem bark, showed anti-parasitic activity towards chloroquine-sensitive as well as chloroquine-resistant P. falciparum, with IC50 values between 1 and 10 µg/mL. Among the isolated compounds, bis-dihydrochelerythrinyl ether, buesgenine, chelerythrine, γ-fagarine, skimmianine, and pellitorine were the most active, with IC50 values of less than 5 µg/mL. The dichloromethane extracts were toxic to brine shrimp nauplii, with LC50 values of less than 1 µg/mL. Methanol extracts were much less toxic (LC50 between 50 and 100 µg/mL). Among the isolated substances, bis-dihydrochelethrinyl ether was the most toxic (LC50 ca. 2 µg/mL).
Assuntos
Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Zanthoxylum/química , Casca de Planta/química , Folhas de Planta/química , Raízes de Plantas/química , Plasmodium falciparum/efeitos dos fármacosRESUMO
Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii.