Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 10(10): e1003907, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25357249

RESUMO

Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA não Traduzido/classificação , RNA não Traduzido/genética , Transcriptoma/genética , Archaea/genética , Bactérias/genética , Análise por Conglomerados , Biologia Computacional , Bases de Dados Genéticas , Filogenia , RNA Arqueal/química , RNA Arqueal/classificação , RNA Arqueal/genética , RNA Bacteriano/química , RNA Bacteriano/classificação , RNA Bacteriano/genética , RNA não Traduzido/química
2.
Genome Biol ; 23(1): 56, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172880

RESUMO

BACKGROUND: Computational biology provides software tools for testing and making inferences about biological data. In the face of increasing volumes of data, heuristic methods that trade software speed for accuracy may be employed. We have studied these trade-offs using the results of a large number of independent software benchmarks, and evaluated whether external factors, including speed, author reputation, journal impact, recency and developer efforts, are indicative of accurate software. RESULTS: We find that software speed, author reputation, journal impact, number of citations and age are unreliable predictors of software accuracy. This is unfortunate because these are frequently cited reasons for selecting software tools. However, GitHub-derived statistics and high version numbers show that accurate bioinformatic software tools are generally the product of many improvements over time. We also find an excess of slow and inaccurate bioinformatic software tools, and this is consistent across many sub-disciplines. There are few tools that are middle-of-road in terms of accuracy and speed trade-offs. CONCLUSIONS: Our findings indicate that accurate bioinformatic software is primarily the product of long-term commitments to software development. In addition, we hypothesise that bioinformatics software suffers from publication bias. Software that is intermediate in terms of both speed and accuracy may be difficult to publish-possibly due to author, editor and reviewer practises. This leaves an unfortunate hole in the literature, as ideal tools may fall into this gap. High accuracy tools are not always useful if they are slow, while high speed is not useful if the results are also inaccurate.


Assuntos
Biologia Computacional , Software , Editoração
3.
Microb Genom ; 7(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34559043

RESUMO

The pan-genome is defined as the combined set of all genes in the gene pool of a species. Pan-genome analyses have been very useful in helping to understand different evolutionary dynamics of bacterial species: an open pan-genome often indicates a free-living lifestyle with metabolic versatility, while closed pan-genomes are linked to host-restricted, ecologically specialized bacteria. A detailed understanding of the species pan-genome has also been instrumental in tracking the phylodynamics of emerging drug resistance mechanisms and drug-resistant pathogens. However, current approaches to analyse a species' pan-genome do not take the species population structure into account, nor do they account for the uneven sampling of different lineages, as is commonplace due to over-sampling of clinically relevant representatives. Here we present the application of a population structure-aware approach for classifying genes in a pan-genome based on within-species distribution. We demonstrate our approach on a collection of 7500 Escherichia coli genomes, one of the most-studied bacterial species and used as a model for an open pan-genome. We reveal clearly distinct groups of genes, clustered by different underlying evolutionary dynamics, and provide a more biologically informed and accurate description of the species' pan-genome.


Assuntos
Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Escherichia coli/genética , Transferência Genética Horizontal , Genômica , Família Multigênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA