Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chemphyschem ; : e202400283, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634178

RESUMO

Halocarbons have important industrial applications, however they contribute to global warming and the fact that they can cause ozone depletion. Hence, the techniques that can capture and recover the used halocarbons with energy efficiency methods have recently received greater attention. In this contribution, we report the capture of dichlorodifluoromethane (R12), which has high global warming and ozone depletion potential, using covalent organic polymers (COPs). The defect-engineered COPs were synthesized and demonstrated outstanding sorption capacities, ~226 wt% of R12 combined with linear-shaped adsorption isotherms. We further identified the plausible microscopic adsorption mechanism of the investigated COPs via grand canonical Monte Carlo simulations applied to non-defective and a collection of atomistic models of the defective COPs. The modeling work suggests that significant R12 adsorption is attributed to a gradual increment of porosities due to isolated/interconnected micro-/meso-pore channels and the change of the long-range ordering of both COPs. The successive hierarchical-pore-filling mechanism promotes R12 molecular adsorption via moderate van der Waals adsorbate-adsorbent interactions in the micropores of both COPs at low pressure followed by adsorbate-adsorbate interactions in the extra-voids created at moderate to high pressure ranges. This continuous pore-filling mechanism makes defective COPs as promising sorbents for halocarbon adsorption.

2.
Acc Chem Res ; 55(5): 649-659, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958192

RESUMO

ConspectusWith the worldwide demand for refrigeration and cooling expected to triple, it is increasingly important to search for alternative energy resources to drive refrigeration cycles with reduced electricity consumption. Recently, adsorption cooling has gained increased attention since energy reallocation in such systems is based on gas adsorption/desorption, which can be driven by waste/natural heat sources. Eco-friendly sorption-based cooling relies on the cyclic transfer of refrigerant gas from a high to low energy state by the pseudocompression effect resulting from adsorption and desorption. The driving force for energy transfer relies on heat rather than electricity. The performance of a sorption chiller is primarily influenced by this cyclic sorption behavior, which is characterized as the working capacity of the porous sorbent. Thus, increases in this working capacity directly translate to a more compact and efficient cooling system. However, a lack of highly effective sorbent/refrigerant pairs lowers cooling performance and therefore has limited applicability. To this end, synthetic metal-organic frameworks (MOFs) and covalent organic polymers (COPs) possess higher porosity and greater tunability leading to more substantial potential benefits for adsorption, compared to traditional sorbent materials. Similarly, hydrofluorocarbon refrigerants have more favorable applicability given the ease of operation above atmospheric pressures due to suitable saturated vapor pressures and boiling points. For these reasons, our work focuses on an ongoing strategy to promote sorption cooling via improvements in the sorbent/refrigerant pair. Specifically, we target the interaction of hydrofluorocarbon refrigerants with MOF/COP materials at a molecular level by interpreting the host-guest chemistry and the role of framework pore topology. These molecular-level differences translate to cooling performance, which is described herein. These strategies include engineering framework porosity (i.e., pore size, pore volume) by using elongated organic linkers and stereochemistry control during synthesis; manipulating the sorbate/sorbent interaction by introducing functional moieties or unsaturated metal centers to enhance working capacities in narrow pressure ranges; varying pore topology/morphology to impact adsorption isotherm behavior; and leveraging defective sites within the frameworks to further enhance adsorption capability. This atomic level understanding of sorbate-sorbent interactions is conducted using various in situ experimental techniques such as synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, in situ Fourier transform infrared spectroscopy, and direct sorption energies determinization with calorimetry. Moreover, the experimentally studied interactions and the corresponding adsorption mechanism are corroborated by computational studies using density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations. Using this approach, we have made strides toward engineering designed frameworks with precise molecular control to target refrigerant molecules and thereby enhance the performance of desired working pairs for sorption-based cooling.

3.
Environ Sci Technol ; 56(20): 14713-14722, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36166676

RESUMO

Mitigating climate change requires transformational advances for carbon dioxide removal, including geologic carbon sequestration in reactive subsurface environments. The Wallula Basalt Carbon Storage Pilot Project demonstrated that CO2 injected into >800 m deep Columbia River Basalt Group flow top reservoirs mineralizes on month-year timescales. Herein, we present new optical petrography, micro-computed X-ray tomography, and electron microscopy results obtained from sidewall cores collected two years after CO2 injection. As no other anthropogenic carbonates from geologic carbon storage field studies have been recovered, this world-unique sample suite provides unparalleled insight for subsurface carbon mineralization products and paragenesis. Chemically zoned nodules with Ca/Mn-rich cores and Fe-dominant outer rims are prominent examples of the neoformed carbonate assemblages with ankerite-siderite compositions and exotic divalent cation correlations. Paragenetic insights for the timing of aragonite, silica, and fibrous zeolites are clarified based on mineral texture and spatial relationships, along with time-resolved downhole fluid sampling. Collectively, these results clarify the mineralogy, chemistry, and paragenesis of carbon mineralization, providing insight into the ultimate fate and transport of CO2 in reactive mafic-ultramafic reservoirs.

4.
Environ Sci Technol ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342971

RESUMO

We used IR and XRD, with supporting theoretical calculations, to investigate the swelling behavior of Na+-, NH4+-, and Cs+-montmorillonites (SWy-2) in supercritical fluid mixtures of H2O, CO2, and CH4. Building on our prior work with Na-clay that demonstrated that H2O facilitated CO2 intercalation at relatively low RH, here we show that increasing CO2/CH4 ratios promote H2O intercalation and swelling of the Na-clay at progressively lower RH. In contrast to the Na-clay, CO2 intercalated and expanded the Cs-clay even in the absence of H2O, while increasing fluid CO2/CH4 ratios inhibited H2O intercalation. The NH4-clay displayed intermediate behavior. By comparing changes in the HOH bending vibration of H2O intercalated in the Cs-, NH4-, and Na-clays, we posit that CO2 facilitated expansion of the Na-clay by participating in outer-sphere solvation of Na+ and by disrupting the H-bond network of intercalated H2O. In no case did the pure CH4 fluid induce expansion. Our experimental data can benchmark modeling studies aimed at predicting clay expansion in humidified fluids with varying ratios of CO2 and CH4 in real reservoir systems with implications for enhanced hydrocarbon recovery and CO2 storage in subsurface environments.

5.
Angew Chem Int Ed Engl ; 60(33): 18037-18043, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-33905177

RESUMO

Adsorption-based cooling is an energy-efficient renewable-energy technology that can be driven using low-grade industrial waste heat and/or solar heat. Here, we report the first exploration of fluorocarbon adsorption using porous covalent organic polymers (COPs) for this cooling application. High fluorocarbon R134a equilibrium capacities and unique overall linear-shaped isotherms are revealed for the materials, namely COP-2 and COP-3. The key role of mesoporous defects on this unusual adsorption behavior was demonstrated by molecular simulations based on atomistic defect-containing models built for both porous COPs. Analysis of simulated R134a adsorption isotherms for various defect-containing atomistic models of the COPs shows a direct correlation between higher fluorocarbon adsorption capacities and increasing pore volumes induced by defects. Combined with their high porosities, excellent reversibility, fast kinetics, and large operating window, these defect-containing porous COPs are promising for adsorption-based cooling applications.

6.
J Am Chem Soc ; 142(6): 3002-3012, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31968934

RESUMO

The rapid growth in the global energy demand for space cooling requires the development of more efficient environmental chillers for which adsorption-based cooling systems can be utilized. Here, in this contribution, we explore sorbents for chiller use via a pore-engineering concept to construct analogs of the 1-dimensional pore metal-organic framework MOF-74 by using elongated organic linkers and stereochemistry control. The prepared pore-engineered MOFs show remarkable equilibrium adsorption of the selected fluorocarbon refrigerant that is translated to a modeled adsorption-based refrigeration cycle. To probe molecular level interactions at the origin of these unique adsorption properties for this series of Ni-MOFs, we combined in situ synchrotron X-ray powder diffraction, neutron powder diffraction, X-ray absorption spectroscopy, calorimetry, Fourier transform infrared techniques, and molecular simulations. Our results reveal the coordination of fluorine (of CH2F in R134a) to the nickel(II) open metal centers at low pressures for each Ni-MOF analog and provide insight into the pore filling mechanism for the full range of the adsorption isotherms. The newly designed Ni-TPM demonstrates exceptional R134a adsorption uptake compared to its parent microporous Ni-MOF-74 due to larger engineered pore size/volume. The application of this adsorption performance toward established chiller conditions yields a working capacity increase for Ni-TPM of about 400% from that of Ni-MOF-74, which combined with kinetics directly correlates to both a higher coefficient of performance and a higher average cooling capacity generated in a modeled chiller.

7.
Inorg Chem ; 59(21): 15620-15625, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33049139

RESUMO

Transition-metal pentacyanonitrosylferrates, commonly known as nitroprussides, have a long and documented history. Here, we synthesize cobalt and nickel nitroprussides (NPs) in order to probe their use as sorbents for water and fluorocarbon uptake for potential water harvesting and cooling applications. These NPs show stable and reversible equilibrium sorption isotherms at room temperature with peak uptake values of ∼40 wt % for H2O and ∼30 wt % for fluorocarbon R134a. At water harvesting conditions, working capacities of ∼19 wt % were obtained for NPs. At sorption cooling conditions, the working capacities favored nickel NP. Given the advantages of an easy, inexpensive, and scalable synthesis, this study demonstrates the potential for using nitroprussides for future water harvesting and adsorption cooling systems.

8.
Environ Sci Technol ; 54(22): 14609-14616, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32915559

RESUMO

In 2013, the Pacific Northwest National Laboratory led a geologic carbon sequestration field demonstration where ∼1000 tonnes of CO2 was injected into several deep Columbia River Basalt zones near Wallula, Washington. Rock core samples extracted from the injection zone two years after CO2 injection revealed nascent carbonate mineralization that was qualitatively consistent with expectations from laboratory experiments and reactive transport modeling. Here, we report on a new detailed analysis of the 2012 pre-injection and 2015 post-injection hydrologic tests that capitalizes on the difference in fluid properties between scCO2 and water to assess changes in near-field, wellbore, and reservoir conditions that are apparent approximately two years following the end of injection. This comparative hydrologic test analysis method provides a new way to quantify the amount of injected CO2 that was mineralized in the field test. Modeling results indicate that approximately 60% of the injected CO2 was sequestered via mineralization within two years, with the resulting carbonates occupying ∼4% of the available reservoir pore space. The method presented here provides a new monitoring tool to assess the fate of CO2 injected into chemically reactive basalt formations but could also be adapted for long-term monitoring and verification within more traditional subsurface carbon storage reservoirs.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Dióxido de Carbono/análise , Projetos Piloto , Silicatos , Washington
9.
Inorg Chem ; 58(5): 3033-3040, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30726070

RESUMO

Efficient regeneration of organolithium compounds is a challenging aspect in the process of novel organometathetical catalytic cycles. One of these catalytic cycles is a newly suggested method for Mg production from seawater that capitalizes on the rich chemistry of Grignard reagents. The proposed three-step catalytic cycle with Cp2 MCl L catalyst ( M = Ti, Zr; L = select organic ligands) requires the regeneration of nBuLi from Li(s), butene, and H2. The potential of this approach is evaluated with density functional theory-based molecular simulations. The results reveal that the high affinity of Li toward Cl and N results in the formation of alkanes, and the strong coupling between the catalyst and BuLi leads to catalyst deactivation. To improve its catalytic performance, we proposed the use of a diamine cocatalyst and a modified catalyst with a ligand that does not contain N, which would help release BuLi from the vicinity of the catalytic center. Ab initio molecular dynamics simulations at 298 K in explicit solvent (THF) were used to estimate the Gibbs free energetics and equilibrium constants obtained from the vibrational density of states using velocity autocorrelation functions. The results show a marked improvement in the free energetics with lower barriers toward the completion of the catalytic cycle and suppression of deactivation channels.

10.
Inorg Chem ; 58(13): 8339-8346, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067043

RESUMO

One approach to reduce increasing concentrations of toxic per- and polyfluoroalkyl substances (PFAS) involves the capture of PFAS from aqueous media using porous materials. The use of highly porous, tunable metal organic framework (MOF) materials is appealing for targeted liquid phase sorption. In this work, we demonstrate the excellent capture of perfluorooctanesulfonate (PFOS) using both the chromium and iron analogs of the MIL-101 framework. Experimental characterization of PFOS uptake reveals unique differences in sorption properties between these two analogs, providing key implications for future PFOS sorbent design. Specifically, STEM-EDS and IR spectroscopy show definitive proof of sorption. Furthermore, XPS analysis shows evidence of a strong interaction between sulfur atoms of the polar headgroup of PFOS and the metal center of the framework in addition to the fluorinated nonpolar tail. Additionally, in situ 19F NMR reveals higher PFOS affinity for Cr-MIL-101 versus Fe-MIL-101 based on sorption kinetics. Surprisingly, at these relatively high PFOS concentrations, activated acetylene black carbon is severely outperformed by both MOFs.

12.
Nano Lett ; 17(11): 6968-6973, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29048916

RESUMO

The magnetic susceptibility of synthesized magnetite (Fe3O4) microspheres was found to decline after the growth of a metal-organic framework (MOF) shell on the magnetite core. Detailed structural analysis of the core-shell particles using scanning electron microscopy, transmission electron microscopy, atom probe tomography, and57Fe-Mössbauer spectroscopy suggests that the distribution of MOF precursors inside the magnetic core resulted in the oxidation of the iron oxide core.

13.
J Am Chem Soc ; 139(31): 10601-10604, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28702994

RESUMO

Metal-organic frameworks (MOFs) have shown promising behavior for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures, which exhibit excellent sorption capabilities toward water and fluorocarbon R134a. To our knowledge, this is the first report of adsorption isotherms of fluorocarbon R134a in MOFs. The adsorption patterns for these materials differ significantly and are attributed to variances in their hydrophobic/hydrophilic pore character associated with differences in pore size.

14.
Chemistry ; 22(45): 16078-16088, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27588557

RESUMO

Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2 O relative to other light gases (e.g., H2 , N2 , CO2 ). Our findings refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS-type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis.

15.
Langmuir ; 31(27): 7533-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26079871

RESUMO

Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m(2). Above this concentration and up to 76 µmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

16.
Environ Sci Technol ; 48(15): 8612-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842544

RESUMO

First-principles molecular dynamics simulations were carried out to explore the mechanistic and thermodynamic ramifications of the exposure of variably hydrated Ca-rich montmorillonites to supercritical CO2 and CO2-SO2 mixtures under geologic storage conditions. In sub- to single-hydrated systems (≤ 1W), CO2 intercalation causes interlamellar expansion of 8-12%, while systems transitioning to 2W may undergo contraction (∼ 7%) or remain almost unchanged. When compared to ∼2W hydration state, structural analysis of the ≤ 1W systems, reveals more Ca-CO2 contacts and partial transition to vertically confined CO2 molecules. Infrared spectra and projected vibrational frequency analysis imply that intercalated Ca-bound CO2 are vibrationally constrained and contribute to the higher frequencies of the asymmetric stretch band. Reduced diffusion coefficients of intercalated H2O and CO2 (10(-6)-10(-7) cm(2)/s) indicate that Ca-montmorillonites in ∼ 1W hydration states can be more efficient in capturing CO2. Simulations including SO2 imply that ∼ 0.66 mmol SO2/g clay can be intercalated without other significant structural changes. SO2 is likely to divert H2O away from the cations, promoting Ca-CO2 interactions and CO2 capture by further reducing CO2 diffusion (10(-8) cm(2)/s). Vibrational bands at ∼ 1267 or 1155 cm(-1) may be used to identify the chemical state (oxidation states +4 or +6, respectively) and the fate of sulfur contaminants.


Assuntos
Silicatos de Alumínio/química , Bentonita/química , Dióxido de Carbono/química , Dióxido de Enxofre/química , Argila , Difusão , Geologia , Água/química
17.
Chem Soc Rev ; 41(6): 2308-22, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22143077

RESUMO

Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents. The recent progress in adsorption-based CO(2) capture by MOFs is reviewed and summarized in this critical review. CO(2) adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures. Keys to CO(2) adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively. Many MOFs have high CO(2) selectivities over N(2) and CH(4). Water effects on CO(2) adsorption in MOFs are presented and compared with benchmark zeolites. In addition, strategies appeared in the literature to enhance CO(2) adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement. Besides the advantages, two main challenges of using MOFs in CO(2) capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges as well (150 references).


Assuntos
Dióxido de Carbono/química , Compostos Organometálicos/química , Adsorção , Propriedades de Superfície
18.
Chemphyschem ; 13(14): 3275-81, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22791542

RESUMO

The framework expansion and contraction upon carbon dioxide uptake was studied in a partially fluorinated metal-organic framework, FMOF-2. The results show framework expansion and contraction (breathing) as a function of pressure and temperature. Even at temperatures as low as -30 °C, two phase transitions seem to take place with a pressure step (corresponding to the second transition) that is greatly dependent on temperature. This behavior is described by the model proposed by Coudert and co-workers showing that the material seems to undergo two phase transitions that are temperature-dependent. The isosteric heats of adsorption at high pressures show a minimum that is concurrent with the region of CO(2) loadings where the second pressure step occurs. It was deduced that these lower enthalpy values are a consequence of the energy cost related to the expansion or reopening of the framework. Lastly, the large and reversible breathing behavior may be a product of the combination of the high elasticity of zinc (II) coordination and the apparent high flexibility of the V-shaped organic building block.


Assuntos
Compostos Organometálicos/química , Temperatura , Adsorção , Dióxido de Carbono/química , Modelos Moleculares , Pressão , Propriedades de Superfície
19.
Phys Chem Chem Phys ; 14(8): 2560-6, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22083039

RESUMO

We report the first Raman spectra of fully (18)O-labeled supercritical CO(2) (scCO(2)) and various isotopic mixtures. The experimental results, coupled with ab initio molecular dynamics calculations, demonstrate that the frequencies assigned to the Fermi dyad of the CO(2) molecule transpose upon isotopic labeling of both oxygen atoms. Although the transposition of the Fermi dyad of CO(2) gas due to isotopic substitution has been discussed before, this is the first confirmation of the effect in the Raman spectrum of the supercritical fluid and provides necessary groundwork for future Raman spectroscopy studies of reactions in this important medium. More importantly, the work yields a quantitative assessment of the mixing of states upon labeling that provides the needed clarification concerning the pedigree of the assignments for the dyad of CO(2) under supercritical conditions.

20.
Sci Rep ; 12(1): 13962, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978019

RESUMO

Injecting fluids into deep underground geologic structures is a critical component to development of long-term strategies for managing greenhouse gas emissions and facilitating energy extraction operations. Recently, we reported that metal-organic frameworks are low-frequency, absorptive-acoustic metamaterial that may be injected into the subsurface to enhance geophysical monitoring tools used to track fluids and map complex structures. A key requirement for this nanotechnology deployment is transportability through porous geologic media without being retained by mineral-fluid interfaces. We used flow-through column studies to estimate transport and retention properties of five different polymer-coated MIL-101(Cr) nanoparticles (NP) in siliceous porous media. When negatively charged polystyrene sulfonate coated nanoparticles (NP-PSS-70K) were transported in 1 M NaCl, only about 8.4% of nanoparticles were retained in the column. Nanoparticles coated with polyethylenimine (NP-PD1) exhibited significant retention (> 50%), emphasizing the importance of complex nanoparticle-fluid-rock interactions for successful use of nanofluid technologies in the subsurface. Nanoparticle transport experiments revealed that nanoparticle surface characteristics play a critical role in nanoparticle colloidal stability and as well the transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA