Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cancer Res ; 19(11): 1917-1928, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34348992

RESUMO

Investigations into the function of nonpromoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated nonpromoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we examined 32 tumor types and identified 57 tumor suppressors and oncogenes out of 260 genes exhibiting a correlation of > 0.5 between gene body methylation and gene expression in at least one tumor type. The lymphocyte-specific gene CARD11 exhibits robust association between gene body methylation and expression across 19 of 32 tumor types examined. It is significantly overexpressed in kidney renal cell carcinoma (KIRC) and lung adenocarcinoma (LUAD) tumor tissues in comparison with respective control samples; and is significantly associated with lower overall survival in KIRC. Contrary to its canonical function in lymphocyte NFκB activation, CARD11 activates the mTOR pathway in KIRC and LUAD, resulting in suppressed autophagy. Furthermore, demethylation of a CpG island within the gene body of CARD11 decreases gene expression. Collectively, our study highlights how DNA methylation outside the promoter region can impact tumor progression. IMPLICATIONS: Our study describes a novel regulatory role of gene body DNA methylation-dependent CARD11 expression on mTOR signaling and its impact on tumor progression.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Metilação de DNA/genética , Linfócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Prognóstico , Transdução de Sinais , Transfecção
2.
Cell Rep ; 34(6): 108726, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567287

RESUMO

Tumor and stromal interactions consist of reciprocal signaling through cytokines, growth factors, direct cell-cell interactions, and extracellular vesicles (EVs). Small EVs (≤200 nm) have been considered critical messengers of cellular communication during tumor development. Here, we demonstrate that gain-of-function (GOF) p53 protein can be packaged into small EVs and transferred to fibroblasts. GOF p53 protein is selectively bound by heat shock protein 90 (HSP90), a chaperone protein, and packaged into small EVs. Inhibition of HSP90 activity blocks packaging of GOF, but not wild-type, p53 in small EVs. GOF p53-containing small EVs result in their conversion to cancer-associated fibroblasts. In vivo studies reveal that GOF p53-containing small EVs can enhance tumor growth and promote fibroblast transformation into a cancer-associated phenotype. These findings provide a better understanding of the complex interactions between cancer and stromal cells and may have therapeutic implications.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Vesículas Extracelulares , Mutação com Ganho de Função , Proteína Supressora de Tumor p53 , Animais , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Feminino , Células HT29 , Humanos , Camundongos , Camundongos Knockout , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Cell Rep ; 36(7): 109549, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407412

RESUMO

Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.


Assuntos
Vesículas Extracelulares/metabolismo , Tetraspanina 30/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Idoso , Animais , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Ovarianas/tratamento farmacológico , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
EBioMedicine ; 43: 127-137, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31056473

RESUMO

BACKGROUND: Investigations into the function of non-promoter DNA methylation have yielded new insights into the epigenetic regulation of gene expression. However, integrated genome-wide non-promoter DNA methylation and gene expression analyses across a wide number of tumour types and corresponding normal tissues have not been performed. METHODS: To investigate the impact of non-promoter DNA methylation on cancer pathogenesis, we performed a large-scale analysis of gene expression and DNA methylation profiles, finding enrichment in the 3'UTR DNA methylation positively correlated with gene expression. Filtering for genes in which 3'UTR DNA methylation strongly correlated with gene expression yielded a list of genes enriched for functions involving T cell activation. FINDINGS: The important immune checkpoint gene Havcr2 showed a substantial increase in 3'UTR DNA methylation upon T cell activation and subsequent upregulation of gene expression in mice. Furthermore, this increase in Havcr2 gene expression was abrogated by treatment with decitabine. INTERPRETATION: These findings indicate that the 3'UTR is a functionally relevant DNA methylation site. Additionally, we show a potential novel mechanism of HAVCR2 regulation in T cells, providing new insights for modulating immune checkpoint blockade.


Assuntos
Regiões 3' não Traduzidas , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genômica , Neoplasias/genética , Linfócitos T/metabolismo , Animais , Biomarcadores Tumorais , Biologia Computacional/métodos , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Bases de Dados Genéticas , Epigênese Genética , Feminino , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genômica/métodos , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/mortalidade , Prognóstico , Linfócitos T/imunologia
5.
J Natl Cancer Inst ; 109(7)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28376174

RESUMO

Background: The PI3K/AKT/P70S6K pathway is an attractive therapeutic target in ovarian and uterine malignancies because of its high rate of deregulation and key roles in tumor growth. Here, we examined the biological effects of MSC2363318A, which is a novel inhibitor of AKT1, AKT3, and P70S6K. Methods: Orthotopic murine models of ovarian and uterine cancer were utilized to study the effect of MSC2363318A on survival and regression. For each cell line, 10 mice were treated in each of the experimental arms tested. Moreover, in vitro experiments in 21 cell lines (MTT, immunoblot analysis, plasmid transfection, reverse phase protein array [RPPA]) were carried out to characterize underlying mechanisms and potential biomarkers of response. All statistical tests were two-sided. Results: MSC2363318A decreased tumor growth and metastases in multiple murine orthotopic models of ovarian (SKOV3ip1, HeyA8, and Igrov1) and uterine (Hec1a) cancer by reducing proliferation and angiogenesis and increasing cell death. Statistically significant prolonged overall survival was achieved with combination MSC2363318A and paclitaxel in the SKUT2 (endometrioid) uterine cancer mouse model ( P < .001). Mice treated with combination MSC2363318A and paclitaxel had the longest overall survival (mean = 104.2 days, 95% confidence interval [CI] = 97.0 to 111.4) compared with those treated with vehicle (mean = 61.9 days, 95% CI = 46.3 to 77.5), MSC2363318A alone (mean = 89.7 days, 95% CI = 83.0 to 96.4), and paclitaxel alone (mean = 73.6 days, 95% CI = 53.4 to 93.8). Regression and stabilization of established tumors in the Ishikawa (endometrioid) uterine cancer model was observed in mice treated with combination MSC2363318A and paclitaxel. Synergy between MSC2363318A and paclitaxel was observed in vitro in cell lines that had an IC50 of 5 µM or greater. RPPA results identified YAP1 as a candidate marker to predict cell lines that were most sensitive to MSC2363318A (R = 0.54, P = .02). After establishment of a murine ovarian cancer model of adaptive anti-angiogenic resistance (SKOV3ip1-luciferase), we demonstrate that resensitization to bevacizumab occurs with the addition of MSC2363318A, resulting in improved overall survival ( P = .01) using the Kaplan-Meier method. Mice treated with bevacizumab induction followed by MSC2363318A had the longest overall survival (mean = 66.0 days, 95% CI = 53.9 to 78.1) compared with mice treated with control (mean = 42.0 days, 95% CI = 31.4 to 52.6) and bevacizumab-sensitive mice (mean = 47.2 days; 95% CI = 37.5 to 56.9). Conclusions: MSC2363318A has therapeutic efficacy in multiple preclinical models of ovarian and uterine cancer. These findings support clinical development of a dual AKT/P70S6K inhibitor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ovarianas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Neoplasias Uterinas/metabolismo , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Bevacizumab/administração & dosagem , Bevacizumab/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Fatores de Transcrição , Carga Tumoral/efeitos dos fármacos , Neoplasias Uterinas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
6.
Nat Commun ; 7: 11169, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27041221

RESUMO

A deeper mechanistic understanding of tumour angiogenesis regulation is needed to improve current anti-angiogenic therapies. Here we present evidence from systems-based miRNA analyses of large-scale patient data sets along with in vitro and in vivo experiments that miR-192 is a key regulator of angiogenesis. The potent anti-angiogenic effect of miR-192 stems from its ability to globally downregulate angiogenic pathways in cancer cells through regulation of EGR1 and HOXB9. Low miR-192 expression in human tumours is predictive of poor clinical outcome in several cancer types. Using 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) nanoliposomes, we show that miR-192 delivery leads to inhibition of tumour angiogenesis in multiple ovarian and renal tumour models, resulting in tumour regression and growth inhibition. This anti-angiogenic and anti-tumour effect is more robust than that observed with an anti-VEGF antibody. Collectively, these data identify miR-192 as a central node in tumour angiogenesis and support the use of miR-192 in an anti-angiogenesis therapy.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Redes Reguladoras de Genes , Proteínas de Homeodomínio/fisiologia , Neoplasias Renais/genética , MicroRNAs/fisiologia , Neovascularização Patológica/genética , Neoplasias Ovarianas/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Terapia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/terapia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/terapia , Fosfatidilcolinas , Carga Tumoral
7.
JCI Insight ; 1(17): e87754, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27777972

RESUMO

Current antiangiogenesis therapy relies on inhibiting newly developed immature tumor blood vessels and starving tumor cells. This strategy has shown transient and modest efficacy. Here, we report a better approach to target cancer-associated endothelial cells (ECs), reverse permeability and leakiness of tumor blood vessels, and improve delivery of chemotherapeutic agents to the tumor. First, we identified deregulated microRNAs (miRs) from patient-derived cancer-associated ECs. Silencing these miRs led to decreased vascular permeability and increased maturation of blood vessels. Next, we screened a thioaptamer (TA) library to identify TAs selective for tumor-associated ECs. An annexin A2-targeted TA was identified and used for delivery of miR106b-5p and miR30c-5p inhibitors, resulting in vascular maturation and antitumor effects without inducing hypoxia. These findings could have implications for improving vascular-targeted therapy.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos , Células Endoteliais/citologia , MicroRNAs/administração & dosagem , Neovascularização Patológica/prevenção & controle , Linhagem Celular Tumoral , Humanos , Nanopartículas , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Transfecção
9.
Am J Clin Pathol ; 123(2): 215-21, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15842045

RESUMO

We report a unique case of de novo composite lymphoma in the tibia of a 35-year-old man who presented with increasingly frequent and intense pain in the right upper leg. He was otherwise healthy without significant medical history. A plain radiograph of the right leg showed a permeative lesion with alternating areas of radiolucency and radiodensity in the upper third of the tibia. Magnetic resonance imaging showed a large, heterogeneous enhancing lesion involving the medullary and cortical bone of the proximal tibia with cortical disruption and extension into the adjacent soft tissue. A biopsy showed sheets and clusters of large cells, punctuated by clusters of small, irregular lymphocytes. Flow cytometry and immunohistochemical analysis showed composite lymphoma: diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell non-Hodgkin lymphoma with predominantly small cell morphologic features. The DLBCL expressed CD19, CD20, CD79a, CD5, CD10, CD23, CD38, CD117, bcl-2, and bcl-6, with monotypic expression of immunoglobulin kappa light chain. The T cells expressed CD2, CD3, CD5, CD7, and CD8, with partial loss of CD4. Clonal rearrangement of T-cell receptor gamma chain gene was found. Neither the large B cells nor the small T cells expressed Epstein-Barr virus-encoded RNA. Physical examination and radiologic studies showed no evidence of lymphadenopathy, organomegaly, or other mass lesions in the body. No peripheral lymphocytosis or bone marrow involvement was present.


Assuntos
Neoplasias Ósseas/patologia , Linfoma de Células B/patologia , Linfoma de Células T Periférico/patologia , Neoplasias Primárias Múltiplas/patologia , Tíbia/patologia , Adulto , Antígenos CD/análise , Biomarcadores Tumorais/análise , Neoplasias Ósseas/química , Células Clonais , Citometria de Fluxo , Rearranjo Gênico da Cadeia gama dos Receptores de Antígenos dos Linfócitos T , Humanos , Cadeias kappa de Imunoglobulina/análise , Imuno-Histoquímica , Linfoma de Células B/química , Linfoma de Células T Periférico/química , Linfoma de Células T Periférico/genética , Imageamento por Ressonância Magnética , Masculino , Neoplasias Primárias Múltiplas/química , Radiografia , Tíbia/diagnóstico por imagem
10.
Alcohol ; 36(3): 201-14, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16377462

RESUMO

Alcohol abuse is associated with increases in both the incidence of fractures and complications in fracture healing. The purpose of this study was to determine the dose-dependent effects of ethanol on bone repair in a rat model. Three-month-old male Wistar rats were continuously fed liquid diets containing ethanol as either 36% or 26% of total calories or control diets for 6 weeks. Then, a bone repair model was created in all rats. Bone healing and liver metabolism were evaluated 7 weeks after bone injury. For each dose, there were three ethanol-feeding groups receiving (1) ethanol for 13 weeks, (2) control diet for 13 weeks (pair-fed), and (3) ethanol before bone injury and control diet (pair-fed) after injury. Another group was fed ethanol (36%) before injury and given control diet ad libitum after injury. There were also two nutritional controls consuming control diet and standard rat chow ad libitum for 13 weeks. Abnormal liver metabolism was evident at the higher ethanol dose - increases in cytochrome P4502E1 specific activity (5-fold; P < .01), triglyceride content (4-fold; P < .02), and liver weight (25%; P = .05) - compared with pair-fed controls. The higher dose of ethanol resulted in deficient bone repair when compared with rats receiving ethanol-free control diet by pair-feeding: 26% less (P = .02) rigidity of the repaired bone, 41% less (P = .02) intrinsic stiffness, 24% less intrinsic strength (P = .05), and 14% less (P = .001) ash density of the repair tissue. The reduced food consumption of ethanol-fed rats compared with that in the nutritional controls did not contribute to this deficiency. Furthermore, removal of ethanol (as 36% of calories) from the diet after bone injury completely restored normal bone healing and nearly normalized the liver metabolism. The lower ethanol dose (26% of calories) had a minimal effect on liver metabolism and bone repair. We conclude that ethanol (as 36% of calories) in the rat diet, especially during the postinjury period, was solely responsible for the observed inhibition of bone repair.


Assuntos
Alcoolismo/patologia , Remodelação Óssea/efeitos dos fármacos , Algoritmos , Animais , Fenômenos Biomecânicos , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Depressores do Sistema Nervoso Central/sangue , Depressores do Sistema Nervoso Central/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Depressão Química , Dieta , Etanol/sangue , Etanol/metabolismo , Etanol/farmacologia , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA