Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 111(5): 633-42, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15668340

RESUMO

BACKGROUND: Drugs that simultaneously decrease platelet function and inflammation may improve the treatment of cardiovascular disorders. Here, we determined whether dipyridamole and aspirin, a combination therapy used to prevent recurrent stroke, regulates gene expression in platelet-monocyte inflammatory model systems. METHODS AND RESULTS: Human platelets and monocytes were pretreated with dipyridamole, aspirin, or both inhibitors. The cells were stimulated with thrombin or activated by adhesion to collagen, and gene expression was measured in the target monocytes. Thrombin-stimulated platelets increased monocyte chemotactic protein-1 (MCP-1) expression by monocytes. Dipyridamole but not aspirin attenuated nuclear translocation of NF-kappaB and blocked the synthesis of MCP-1 at the transcriptional level. Dipyridamole delayed maximal synthesis of interleukin-8 but did not alter cyclooxygenase-2 accumulation. Adherence to collagen and platelets also increased the expression of matrix metalloproteinase-9 (MMP-9) in monocytes, a response that was inhibited by dipyridamole. In this case, however, dipyridamole did not block transcription or distribution of MMP-9 mRNA to actively translating polysomes, indicating that it regulates the expression of MMP-9 protein at a postinitiation stage of translation. Dipyridamole also blocked MCP-1 and MMP-9 generated by lipopolysaccharide-treated monocytes, indicating that at least part of its inhibitory action is unrelated to its antiplatelet properties. CONCLUSIONS: These results indicate that dipyridamole has selective antiinflammatory properties that may contribute to its actions in the secondary prevention of stroke.


Assuntos
Plaquetas/efeitos dos fármacos , Dipiridamol/farmacologia , Mediadores da Inflamação/metabolismo , Monócitos/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Plaquetas/fisiologia , Agregação Celular , Comunicação Celular/efeitos dos fármacos , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Monócitos/imunologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
2.
Semin Thromb Hemost ; 30(4): 491-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15354270

RESUMO

For most cells the nucleus takes center stage. Not only is it the largest organelle in eukaryotic cells, it carries most of the genome and transcription of DNA to RNA largely takes place in the nucleus. Because transcription is a major step in gene regulation, the absence of a nucleus is limiting from a biosynthetic standpoint. Consequently, the anucleate status of platelets has stereotyped it as a cell without synthetic potential. It is now clear, however, that this viewpoint is far too simplistic. In response to physiologic stimuli, platelets synthesize biologically relevant proteins that are regulated via gene expression programs at the translational level. This process does not require a nucleus; instead, it uses mRNAs and other translational factors that appear to be retained in specialized fashion as megakaryocytes generate platelets during thrombopoiesis. We highlight the molecular machinery and pathways used by platelets to translate mRNA into protein and offer insight into how these synthesized products may regulate thrombotic and inflammatory events.


Assuntos
Plaquetas/fisiologia , Proteínas Sanguíneas/genética , Núcleo Celular/genética , Biossíntese de Proteínas , Animais , Humanos , Fenótipo , RNA Mensageiro/genética , Ribossomos/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA