Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Genom ; 3(11): 100418, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020971

RESUMO

We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.

2.
Synth Biol (Oxf) ; 3(1): ysy019, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32995525

RESUMO

Modular parts for tuning translation are prevalent in prokaryotic synthetic biology but lacking for eukaryotic synthetic biology. Working in Saccharomyces cerevisiae yeast, we here describe how hairpin RNA structures inserted into the 5' untranslated region (5'UTR) of mRNAs can be used to tune expression levels by 100-fold by inhibiting translation. We determine the relationship between the calculated free energy of folding in the 5'UTR and in vivo protein abundance, and show that this enables rational design of hairpin libraries that give predicted expression outputs. Our approach is modular, working with different promoters and protein coding sequences, and outperforms promoter mutation as a way to predictably generate a library where a protein is induced to express at a range of different levels. With this new tool, computational RNA sequence design can be used to predictably fine-tune protein production for genes expressed in yeast.

3.
Nat Commun ; 8: 15202, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469278

RESUMO

Fungi are a valuable source of enzymatic diversity and therapeutic natural products including antibiotics. Here we engineer the baker's yeast Saccharomyces cerevisiae to produce and secrete the antibiotic penicillin, a beta-lactam nonribosomal peptide, by taking genes from a filamentous fungus and directing their efficient expression and subcellular localization. Using synthetic biology tools combined with long-read DNA sequencing, we optimize productivity by 50-fold to produce bioactive yields that allow spent S. cerevisiae growth media to have antibacterial action against Streptococcus bacteria. This work demonstrates that S. cerevisiae can be engineered to perform the complex biosynthesis of multicellular fungi, opening up the possibility of using yeast to accelerate rational engineering of nonribosomal peptide antibiotics.


Assuntos
Antibacterianos/biossíntese , Engenharia Genética/métodos , Penicilina G/metabolismo , Penicilinas/biossíntese , Biossíntese de Peptídeos Independentes de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Streptococcus/crescimento & desenvolvimento , Fermentação , Biossíntese de Peptídeos Independentes de Ácido Nucleico/fisiologia , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA