Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 69(4): 610-621.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452640

RESUMO

Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Glicina Hidroximetiltransferase/metabolismo , Mitocôndrias/genética , Iniciação Traducional da Cadeia Peptídica , RNA de Transferência de Metionina/química , Serina/química , Animais , Apoptose , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Proliferação de Células , Citosol/metabolismo , Feminino , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Serina/genética , Serina/metabolismo , Tetra-Hidrofolatos/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Environ Manage ; 71(4): 741-754, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36507978

RESUMO

The U.S. Mid-Atlantic coastal region is experiencing higher rates of SLR than the global average, especially in Hampton Roads, Virginia, where this acceleration is primarily driven by land subsidence. The adaptation plans for coastal flooding are generally developed at the municipal level, ignoring the broader spatial implications of flooding outside the individual administrative boundaries. Flood impact assessments at the watershed scale would provide a more holistic perspective on what is needed to synchronize the adaptation efforts between the neighboring administrative units. This paper evaluates flooding impacts from sea level rise (SLR) and storm surge among watersheds in Hampton Roads to identify those most at risk of coastal flooding over different time horizons. It also explores the implications of flooding on the municipalities, the land uses, and land covers throughout this region within the case study watershed. The 2% Annual Exceedance Probability (AEP) storm surge flood hazard data and NOAA's intermediate SLR projections were used to develop flooding scenarios for 2030, 2060, and 2090 and delineate land areas at risk of combined flooding. Findings show that five out of 98 watersheds will substantially increase in inundation, with two intersecting multiple municipalities. They also indicate significant inundation of military, commercial, and industrial land uses and wetland land covers. Flooding will also impact residential land use in urban areas along the Elizabeth River and Hampton city, supporting the need for collaborative adaptation planning on hydrologically influenced spatial scales.


Assuntos
Inundações , Áreas Alagadas , Probabilidade , Cidades , Virginia
3.
Environ Monit Assess ; 193(12): 765, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731316

RESUMO

Benthic macroinvertebrate community assessments are used commonly to characterize aquatic systems and increasingly for identifying their impairment caused by myriad stressors. Yet sampling and enumeration methods vary, and research is needed to compare their abilities to detect macroinvertebrate community responses to specific water quality variables. A common assessment method, rapid bioassessment, uses subsampling procedures to identify a fixed number of individual organisms regardless of total sample abundance. In contrast, full-enumeration assessments typically allow for expanded community characterization resulting from higher numbers of identified organisms within a collected sample. Here, we compared these two sampling and enumeration methods and their abilities to detect benthic macroinvertebrate response to freshwater salinization, a common stressor of streams worldwide. We applied both methods in headwater streams along a salinity gradient within the coal-mining region of central Appalachia USA. Metrics of taxonomic richness, community composition, and trophic function differed between the methods, yet most metrics exhibiting significant response to SC for full-enumeration samples also did for rapid bioassessment samples. However, full-enumeration yielded taxonomic-based metrics consistently more responsive to the salinization gradient. Full-enumeration assessments may potentially provide more complete characterization of macroinvertebrate communities and their response to increased salinization, whereas the more cost-effective and widely employed rapid bioassessment method can detect community alterations along the full salinity gradient. These findings can inform decisions regarding such tradeoffs for assessments of freshwater salinization in headwater streams and highlight the need for similar research of sampling and enumeration methodology in other aquatic systems and for other stressors.


Assuntos
Invertebrados , Rios , Animais , Ecossistema , Monitoramento Ambiental , Salinidade , Qualidade da Água
4.
Proc Natl Acad Sci U S A ; 113(8): 1978-86, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858425

RESUMO

Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.


Assuntos
Modelos Biológicos , Áreas Alagadas , América do Norte
5.
J Environ Manage ; 233: 342-351, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590264

RESUMO

Drainage is a globally common disturbance in forested peatlands that impacts peat soils, forest communities, and associated ecosystem functions, calling for informed hydrologic restoration strategies. The Great Dismal Swamp (GDS), located in Virginia and North Carolina, U.S.A., has been altered since colonial times, particularly by extensive ditch networks installed to lower water levels and facilitate timber harvests. Consequently, peat decomposition rates have accelerated, and red maple has become the dominant tree species, reducing the historical mosaic of bald cypress, Atlantic white-cedar, and pocosin stands. Recent repair and installation of water control structures aim to control drainage and, in doing so, enhance forest community composition and preserve peat depths. To help inform these actions, we established five transects of 15 plots each (75 plots total) along a hydrologic gradient where we measured continuous water levels and ecosystem attributes, including peat depths, microtopography, and forest composition and structure. We found significant differences among transects, with wetter sites having thicker peat, lower red maple importance, greater tree density, and higher overall stand richness. Plot-level analyses comported with these trends, clearly grouping plots by transects (via nonmetric multidimensional scaling) and resulting in significant correlations between specific hydrologic metrics and ecosystem attributes. Our findings highlight hydrologic controls on soil carbon storage, forest structure, and maple dominance, with implications for large-scale hydrologic restoration at GDS and in other degraded forested peatlands more broadly.


Assuntos
Ecossistema , Florestas , North Carolina , Virginia , Áreas Alagadas
6.
Environ Monit Assess ; 191(4): 226, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30887248

RESUMO

Scientists and policymakers increasingly recognize that headwater regions contain numerous temporary streams that expand and contract in length, but accurately mapping and modeling dynamic stream networks remain a challenge. Flow intermittency sensors offer a relatively new approach to characterize wet stream length dynamics at high spatial and temporal resolutions. We installed 51 flow intermittency sensors at an average spacing of 40 m along the stream network of a high-relief, headwater catchment (33 ha) in the Valley and Ridge of southwest Virginia. The sensors recorded the presence or absence of water every 15 min for 10 months. Calculations of the wet network proportion from sensor data aligned with those from field measurements, confirming the efficacy of flow intermittency sensors. The fine temporal scale of the sensor data showed hysteresis in wet stream length: the wet network proportion was up to 50% greater on the rising limb of storm events than on the falling limb for dry antecedent conditions, at times with a delay of several hours between the maximum wet proportion and peak runoff at the catchment outlet. Less stream length hysteresis was evident for larger storms with higher event and antecedent precipitation that resulted in peak runoff > 15 mm/day. To assess spatial controls on stream wetting and drying, we performed a correlation analysis between flow duration at the sensor locations and common topographic metrics used in stream network modeling. Topography did not fully explain spatial variation in flow duration along the stream network. However, entrenched valleys had longer periods of flow on the rising limbs of events than unconfined reaches. In addition, large upslope contributing areas corresponded to higher flow duration on falling limbs. Future applications that explore the magnitude and drivers of stream length variability may provide further insights into solute and runoff generation processes in headwater regions.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Movimentos da Água , Virginia , Poluentes da Água
7.
J Am Water Resour Assoc ; 55(3): 559-577, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34316250

RESUMO

Representing hydrologic connectivity of non-floodplain wetlands (NFWs) to downstream waters in process-based models is an emerging challenge relevant to many research, regulatory, and management activities. We review four case studies that utilize process-based models developed to simulate NFW hydrology. Models range from a simple, lumped parameter model to a highly complex, fully distributed model. Across case studies, we highlight appropriate application of each model, emphasizing spatial scale, computational demands, process representation, and model limitations. We end with a synthesis of recommended "best modeling practices" to guide model application. These recommendations include: (1) clearly articulate modeling objectives, and revisit and adjust those objectives regularly; (2) develop a conceptualization of NFW connectivity using qualitative observations, empirical data, and process-based modeling; (3) select a model to represent NFW connectivity by balancing both modeling objectives and available resources; (4) use innovative techniques and data sources to validate and calibrate NFW connectivity simulations; and (5) clearly articulate the limits of the resulting NFW connectivity representation. Our review and synthesis of these case studies highlights modeling approaches that incorporate NFW connectivity, demonstrates tradeoffs in model selection, and ultimately provides actionable guidance for future model application and development.

8.
Ecol Appl ; 28(4): 953-966, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437239

RESUMO

Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (<3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic "gatekeepers," preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios. We additionally found that depressional wetlands attenuated peak flows; the probability of increased downstream flooding from wetland loss was also consistent across all loss scenarios. It is evident from this study that optimizing wetland management for one end goal (e.g., protection of large depressional wetlands for flood attenuation) over another (e.g., protecting of small depressional wetlands for biodiversity) may come at a cost for overall watershed hydrological, biogeochemical, and ecological resilience, functioning, and integrity.


Assuntos
Ciclo Hidrológico , Áreas Alagadas , Modelos Teóricos , North Dakota , Rios
9.
J Environ Manage ; 222: 436-446, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894947

RESUMO

Wetlands self-organize through reciprocal controls between vegetation and hydrology, but external disturbance may disrupt these feedbacks with consequent changes to ecosystem state. Imminent and widespread emerald ash borer (EAB) infestation throughout North American forested wetlands has raised concern over possible ecosystem state shifts (i.e., wetter, more herbaceous systems) and loss of forest function, calling for informed landscape-scale management strategies. In response, we employed a large-scale manipulative study to assess the ecohydrologic response of black ash wetlands to three alternative EAB management strategies: 1) a do-nothing approach (i.e., simulated EAB infestation via tree girdling), 2) a preemptive, complete harvesting approach (i.e., clearcut), and 3) an overstory replacement approach via group selection. We analyzed six years of daily water table and evapotranspiration (ET) dynamics in six blocks comprising black ash wetlands (controls) and management strategy treatments to quantify potential for hydrologic change and subsequent recovery. In both the do-nothing approach and complete harvesting approach, we found persistent changes in hydrologic regime defined by shallower water tables and lower ET rates coupled with increased herbaceous vegetation growth, indicating ecosystem state shifts driven by vegetation-water table interactions. The do-nothing approach showed the least hydrologic recovery after five years, which we attribute to reduction in overstory transpiration as well as greater shade (via standing dead trees) that reduces open water evaporation and herbaceous layer transpiration compared to complete harvesting. We found no evidence of ecohydrologic disturbance in the overstory replacement approach, highlighting its potential as a management strategy to preserve forested wetland habitat if periodically executed over time before EAB infestation. Although the scale of potential disturbance is daunting, our findings provide a baseline assessment for forest managers to develop preemptive mitigation strategies to address the threat of EAB to ecological functions in black ash wetlands.


Assuntos
Florestas , Espécies Introduzidas , Áreas Alagadas , Animais , Besouros , Conservação dos Recursos Naturais , Fraxinus , Árvores
10.
Front Ecol Environ ; 15(6): 319-327, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30505246

RESUMO

Wetlands across the globe provide extensive ecosystem services. However, many wetlands - especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) - remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.

11.
Ecol Appl ; 23(7): 1619-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24261044

RESUMO

Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction at all sites in response to rainfall. This buffering effect on regional aquifer levels, an underappreciated service of isolated wetlands, was provided regardless of condition. Intensive landscapes may benefit most from the hydrologic services that wetlands provide because that is where certain services (floodwater storage, microclimate regulation) are realized. While the portfolio of wetland services clearly changes with disturbance, our results support a revised approach to wetland valuation that recognizes the services that accrue from sustained or enhanced functions in these "working wetlands."


Assuntos
Água Subterrânea , Movimentos da Água , Áreas Alagadas , Florida , Atividades Humanas
12.
PeerJ ; 11: e16050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744236

RESUMO

Ephemeral wetlands are globally important systems that are regulated by regular cycles of wetting and drying, which are primarily controlled by responses to relatively short-term weather events (e.g., precipitation and evapotranspiration). Climate change is predicted to have significant effects on many ephemeral wetland systems and the organisms that depend on them through altered filling or drying dates that impact hydroperiod. To examine the potential effects of climate change on pine flatwoods wetlands in the southeastern United States, we created statistical models describing wetland hydrologic regime using an approximately 8-year history of water level monitoring and a variety of climate data inputs. We then assessed how hydrology may change in the future by projecting models forward (2025-2100) under six future climate scenarios (three climate models each with two emission scenarios). We used the model results to assess future breeding conditions for the imperiled Reticulated Flatwoods Salamander (Ambystoma bishopi), which breeds in many of the study wetlands. We found that models generally fit the data well and had good predictability across both training and testing data. Across all models and climate scenarios, there was substantial variation in the predicted suitability for flatwoods salamander reproduction. However, wetlands with longer hydroperiods tended to have fewer model iterations that predicted at least five consecutive years of reproductive failure (an important metric for population persistence). Understanding potential future risk to flatwoods salamander populations can be used to guide conservation and management actions for this imperiled species.


Assuntos
Mudança Climática , Urodelos , Animais , Áreas Alagadas , Melhoramento Vegetal , Ambystoma
13.
Sci Total Environ ; 870: 161829, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731558

RESUMO

Mangrove ecosystems are among the most economically and ecologically valuable marine environments in the world. Mangroves are effective at long-term carbon storage within their sediments and are estimated to hold 12 billion metric tons of carbon worldwide. These ecosystems are therefore vitally important for carbon sequestration and, by extension, climate change mitigation. As part of the Paris Agreement, participating countries agree to provide plans to reduce their carbon emissions, or nationally determined contributions (NDCs). However, despite mangroves being recognized as important nature-based solutions, many countries still lack national data on carbon stocks and must use global or regional averages, which may not be sufficiently accurate. Here, we present the national carbon stock estimate of mangrove ecosystems for the NDC of Belize, acquired through a collaborative approach involving government agencies and NGOs. We conducted a comprehensive sampling of mangroves across the country, including a range of mangrove ecotypes. The mean total ecosystem carbon stock (TECS) for the nation was 444.1 ± 21.0 Mg C ha-1, with 74.4 ± 6.2 Mg C ha-1 in biomass stocks, and 369.7 ± 17.7 Mg C ha-1 in sediment stocks. Combining these data with a recent mapping effort, we provide the first national comprehensive mangrove carbon stock estimate of 25.7 Tg C. The national mean from this study varies from previous global analyses, which can under- or overestimate TECS by as much as 0.6 Tg C and 16.5 Tg C, respectively, depending on the study. These data supported the NDC update of Belize, and can be used to inform the country's mangrove protection and restoration commitments. The collaborative approach of this work should serve as a blueprint for other countries seeking to conserve natural blue carbon sinks as a strategy to achieve their climate targets.

16.
J Surg Case Rep ; 2022(5): rjac214, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35665402

RESUMO

Scrotal lipoma is a type of rare benign mesenchymal tumor. These lipomas can masquerade as inguinal hernias that can cause surgical dilemmas. The size of lipomas can vary, with some growing into remarkably large masses. We present a case of a 75-year-old male with a history of laparoscopic hernia repair, who noticed a progressively enlarging left scrotal bulge. An open hernia repair procedure was performed, unexpectedly revealing two large left-sided scrotal masses, which were subsequently excised. Based upon the histopathologic findings of these masses, scrotal lipomas with fat necrosis were diagnosed.

17.
Prev Vet Med ; 204: 105666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594608

RESUMO

There is increasing emphasis on the need to reduce antimicrobial use (AMU) on dairy farms to reduce the emergence of resistant bacteria which could compromise animal health and impact human medicine. In addition to AMU, the role of farm management is an area of growing interest and represents an alternative route for possible interventions. The aim of this study was to evaluate the impact of farm management practices and AMU on resistances of sentinel bacteria in bulk milk. Dairy farms from two, geographically separate locations within the British Isles were recruited as part of two study groups. Farm management data from study group 1 (n = 125) and study group 2 (n = 16) were collected by means of a face-to-face questionnaire with farmers carried out during farm visits. For study group 2, additional data on AMU was collated from veterinary medicine sales records. Sentinel bacterial species (Enterococcus spp. and E. coli), which have been reported to be of value in antimicrobial resistance (AMR) studies, were isolated from bulk tank milk to monitor antimicrobial susceptibilities by means of minimum inhibitory concentrations (MICs). MIC data for both groups was used to generate an overall "score" for each farm. For both groups, this overall farm mean MIC was used as the outcome variable to evaluate the impact of farm management and AMU. This was achieved through use of elastic net modelling, a regularised regression method which also featured a bootstrapping procedure to produce robust models. Inference of models was based on covariate stabilities and bootstrapped P-values to identify farm management and AMU practices that have significant effects on MICs of sentinel bacteria. Practices which were found to be of importance with respect to Enterococcus spp. included management of slurry, external entry of livestock to the dairy herd, use of bedding materials and conditioners, cubicle cleaning routines and antibiotic practices, including use of ß-lactams and fluoroquinolones. Practices deemed to be of importance for E. coli MICs included cubicle and bedding management practices, teat preparation routines at milking and the milking procedure itself. We conclude that a variety of routine farm management practices are associated with MICs of sentinel bacteria in bulk milk. Amendment of these practices offers additional possible routes of intervention, alongside alterations to AMU, to mitigate the emergence and dissemination of AMR on dairy farms.


Assuntos
Anti-Infecciosos , Leite , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Indústria de Laticínios/métodos , Farmacorresistência Bacteriana , Enterococcus , Escherichia coli , Fazendas , Leite/microbiologia
18.
Sports (Basel) ; 11(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36668710

RESUMO

The purpose of this investigation was to compare concentric movement velocity (CMV) measured with the PUSH Band (v2.0) and a Vicon motion capture system (MC) during the back squat (SQ) and the bench press (BP) resistance exercises (RE). Twelve resistance-trained males (26.0 ± 5.5 years; 175.6 ± 4.9 cm; 96.3 ± 15.8 kg) completed ten repetitions at 50% of one-repetition maximum (1RM), and six repetitions at 75% 1RM for both BP and SQ. Four PUSH devices were utilized and attached to the subject's right forearm, the center barbell, left and right sides of the barbell. MC markers were placed on top of each PUSH device. An overall analysis using a series of least-squares means contrasts suggested CMV did not differ (p > 0.05) between measurement technologies when position, RE, intensity and repetitions were combined. PUSH exhibited the highest Intraclass Correlation Coefficients (ICC = 0.835−0.961) and Pearson Product-Moment Correlation Coefficients (r = 0.742−0.949) at the arm and center barbell locations when compared with MC. The measurement of CMV between MC and PUSH compares favorably during moderate (i.e., 50%) and high (75%) intensity SQ and BP RE. These data indicate individuals can use the PUSH band v2.0 to accurately monitor CMV within a RE set for SQ and BP RE.

19.
Ecosystems ; 26: 1-28, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37534325

RESUMO

Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.

20.
Ann Vasc Surg ; 25(4): 556.e11-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21549927

RESUMO

Aneurysms of the hepatic artery are rare, but are associated with significant mortality because of their lack of symptoms at presentation and risk of rupture. We report a case of an enlarging 4-cm hepatic artery aneurysm involving the proximal common hepatic artery to the bifurcation of the right and left hepatic arteries which was found incidentally on ultrasound examination. Endovascular treatment with a stent was considered, but because of the location of the aneurysm as well as the presence of significant thrombosis involving the right and left hepatic arteries, aneurysmectomy and revascularization using saphenous vein was performed. Doppler ultrasound measurements demonstrated good flow through the graft postoperatively and at 1-month follow-up. Although a variety of endovascular techniques exist to treat hepatic artery aneurysms, our results indicate that open excision and revascularization may be required and can have a good outcome.


Assuntos
Aneurisma/cirurgia , Artéria Hepática/cirurgia , Veia Safena/transplante , Enxerto Vascular , Idoso , Aneurisma/diagnóstico , Artéria Hepática/diagnóstico por imagem , Humanos , Achados Incidentais , Masculino , Tomografia Computadorizada por Raios X , Transplante Autólogo , Resultado do Tratamento , Ultrassonografia Doppler Dupla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA