RESUMO
Suicidal ideation (SI) often precedes and predicts suicide attempt and death, is the most common suicidal phenotype and is over-represented in veterans. The genetic architecture of SI in the absence of suicide attempt (SA) is unknown, yet believed to have distinct and overlapping risk with other suicidal behaviors. We performed the first GWAS of SI without SA in the Million Veteran Program (MVP), identifying 99,814 SI cases from electronic health records without a history of SA or suicide death (SD) and 512,567 controls without SI, SA or SD. GWAS was performed separately in the four largest ancestry groups, controlling for sex, age and genetic substructure. Ancestry-specific results were combined via meta-analysis to identify pan-ancestry loci. Four genome-wide significant (GWS) loci were identified in the pan-ancestry meta-analysis with loci on chromosomes 6 and 9 associated with suicide attempt in an independent sample. Pan-ancestry gene-based analysis identified GWS associations with DRD2, DCC, FBXL19, BCL7C, CTF1, ANNK1, and EXD3. Gene-set analysis implicated synaptic and startle response pathways (q's<0.05). European ancestry (EA) analysis identified GWS loci on chromosomes 6 and 9, as well as GWS gene associations in EXD3, DRD2, and DCC. No other ancestry-specific GWS results were identified, underscoring the need to increase representation of diverse individuals. The genetic correlation of SI and SA within MVP was high (rG = 0.87; p = 1.09e-50), as well as with post-traumatic stress disorder (PTSD; rG = 0.78; p = 1.98e-95) and major depressive disorder (MDD; rG = 0.78; p = 8.33e-83). Conditional analysis on PTSD and MDD attenuated most pan-ancestry and EA GWS signals for SI without SA to nominal significance, with the exception of EXD3 which remained GWS. Our novel findings support a polygenic and complex architecture for SI without SA which is largely shared with SA and overlaps with psychiatric conditions frequently comorbid with suicidal behaviors.
Assuntos
Transtorno Depressivo Maior , Veteranos , Humanos , Ideação Suicida , Veteranos/psicologia , Estudo de Associação Genômica Ampla , Transtorno Depressivo Maior/genética , Tentativa de Suicídio/psicologia , Fatores de RiscoRESUMO
BACKGROUND: Plasmodium falciparum malaria is a leading cause of pediatric morbidity and mortality in holoendemic transmission areas. Severe malarial anemia [SMA, hemoglobin (Hb) < 5.0 g/dL in children] is the most common clinical manifestation of severe malaria in such regions. Although innate immune response genes are known to influence the development of SMA, the role of natural killer (NK) cells in malaria pathogenesis remains largely undefined. As such, we examined the impact of genetic variation in the gene encoding a primary NK cell receptor, natural cytotoxicity-triggering receptor 3 (NCR3), on the occurrence of malaria and SMA episodes over time. METHODS: Susceptibility to malaria, SMA, and all-cause mortality was determined in carriers of NCR3 genetic variants (i.e., rs2736191:C > G and rs11575837:C > T) and their haplotypes. The prospective observational study was conducted over a 36 mos. follow-up period in a cohort of children (n = 1,515, aged 1.9-40 mos.) residing in a holoendemic P. falciparum transmission region, Siaya, Kenya. RESULTS: Poisson regression modeling, controlling for anemia-promoting covariates, revealed a significantly increased risk of malaria in carriers of the homozygous mutant allele genotype (TT) for rs11575837 after multiple test correction [Incidence rate ratio (IRR) = 1.540, 95% CI = 1.114-2.129, P = 0.009]. Increased risk of SMA was observed for rs2736191 in children who inherited the CG genotype (IRR = 1.269, 95% CI = 1.009-1.597, P = 0.041) and in the additive model (presence of 1 or 2 copies) (IRR = 1.198, 95% CI = 1.030-1.393, P = 0.019), but was not significant after multiple test correction. Modeling of the haplotypes revealed that the CC haplotype had a significant additive effect for protection against SMA (i.e., reduced risk for development of SMA) after multiple test correction (IRR = 0.823, 95% CI = 0.711-0.952, P = 0.009). Although increased susceptibility to SMA was present in carriers of the GC haplotype (IRR = 1.276, 95% CI = 1.030-1.581, P = 0.026) with an additive effect (IRR = 1.182, 95% CI = 1.018-1.372, P = 0.029), the results did not remain significant after multiple test correction. None of the NCR3 genotypes or haplotypes were associated with all-cause mortality. CONCLUSIONS: Variation in NCR3 alters susceptibility to malaria and SMA during the acquisition of naturally-acquired malarial immunity. These results highlight the importance of NK cells in the innate immune response to malaria.
Assuntos
Anemia , Malária Falciparum , Malária , Humanos , Criança , Anemia/genética , Genótipo , Malária Falciparum/genética , Alelos , Receptor 3 Desencadeador da Citotoxicidade NaturalRESUMO
To identify pan-ancestry and ancestry-specific loci associated with attempting suicide among veterans, we conducted a genome-wide association study (GWAS) of suicide attempts within a large, multi-ancestry cohort of U.S. veterans enrolled in the Million Veterans Program (MVP). Cases were defined as veterans with a documented history of suicide attempts in the electronic health record (EHR; N = 14,089) and controls were defined as veterans with no documented history of suicidal thoughts or behaviors in the EHR (N = 395,064). GWAS was performed separately in each ancestry group, controlling for sex, age and genetic substructure. Pan-ancestry risk loci were identified through meta-analysis and included two genome-wide significant loci on chromosomes 20 (p = 3.64 × 10-9) and 1 (p = 3.69 × 10-8). A strong pan-ancestry signal at the Dopamine Receptor D2 locus (p = 1.77 × 10-7) was also identified and subsequently replicated in a large, independent international civilian cohort (p = 7.97 × 10-4). Additionally, ancestry-specific genome-wide significant loci were also detected in African-Americans, European-Americans, Asian-Americans, and Hispanic-Americans. Pathway analyses suggested over-representation of many biological pathways with high clinical significance, including oxytocin signaling, glutamatergic synapse, cortisol synthesis and secretion, dopaminergic synapse, and circadian rhythm. These findings confirm that the genetic architecture underlying suicide attempt risk is complex and includes both pan-ancestry and ancestry-specific risk loci. Moreover, pathway analyses suggested many commonly impacted biological pathways that could inform development of improved therapeutics for suicide prevention.
Assuntos
Estudo de Associação Genômica Ampla , Veteranos , Negro ou Afro-Americano/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Tentativa de Suicídio , População Branca/genéticaRESUMO
Analysis of longitudinal Electronic Health Record (EHR) data is an important goal for precision medicine. Difficulty in applying Machine Learning (ML) methods, either predictive or unsupervised, stems in part from the heterogeneity and irregular sampling of EHR data. We present an unsupervised probabilistic model that captures nonlinear relationships between variables over continuous-time. This method works with arbitrary sampling patterns and captures the joint probability distribution between variable measurements and the time intervals between them. Inference algorithms are derived that can be used to evaluate the likelihood of future using under a trained model. As an example, we consider data from the United States Veterans Health Administration (VHA) in the areas of diabetes and depression. Likelihood ratio maps are produced showing the likelihood of risk for moderate-severe vs minimal depression as measured by the Patient Health Questionnaire-9 (PHQ-9).
Assuntos
Registros Eletrônicos de Saúde , Aprendizado de Máquina , Algoritmos , Humanos , Modelos Estatísticos , ProbabilidadeRESUMO
Cyclooxygenase-2 [(COX-2) or prostaglandin endoperoxide H2 synthase-2 (PTGS-2)] induces the production of prostaglandins as part of the host-immune response to infections. Although a number of studies have demonstrated the effects of COX-2 promoter variants on autoimmune and inflammatory diseases, their role in malaria remains undefined. As such, we investigated the relationship between four COX-2 promoter variants (COX-2 -512 C > T, -608 T > C, -765 G > C, and -1195 A > G) and susceptibility to malaria and severe malarial anemia (SMA) upon enrollment and longitudinally over a 36-month follow-up period. All-cause mortality was also explored. The investigation was carried out in children (n = 1081, age; 2-70 months) residing in a holoendemic Plasmodium falciparum transmission region of western Kenya. At enrollment, genotypes/haplotypes (controlling for anemia-promoting covariates) did not reveal any strong effects on susceptibility to either malaria or SMA. Longitudinal analyses showed decreased malaria episodes in children who inherited the -608 CC mutant allele (RR = 0.746, P = 1.811 × 10-4) and -512C/-608T/-765G/-1195G (CTGG) haplotype (RR = 0.856, P = 0.011), and increased risk in TTCA haplotype carriers (RR = 1.115, P = 0.026). Over the follow-up period, inheritance of the rare TTCG haplotype was associated with enhanced susceptibility to both malaria (RR = 1.608, P = 0.016) and SMA (RR = 5.714, P = 0.004), while carriage of the rare TTGG haplotype increased the risk of malaria (RR = 1.755, P = 0.007), SMA (RR = 8.706, P = 3.97 × 10-4), and all-cause mortality (HR = 110.000, P = 0.001). Collectively, these results show that SNP variations in the COX-2 promoter, and their inherited combinations, are associated with the longitudinal risk of malaria, SMA, and all-cause mortality among children living in a high transmission area for P. falciparum.
Assuntos
Anemia/genética , Ciclo-Oxigenase 2/genética , Malária Falciparum/genética , Malária/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Anemia/mortalidade , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Lactente , Quênia , Estudos Longitudinais , Malária/imunologia , Malária/mortalidade , Malária/transmissão , Malária Falciparum/imunologia , Malária Falciparum/mortalidade , Malária Falciparum/transmissão , Masculino , RiscoRESUMO
Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.
Assuntos
Conotoxinas/química , Caramujo Conus/química , Desenho de Fármacos , Canais Iônicos/antagonistas & inibidores , Sequência de Aminoácidos/genética , Animais , Simulação por Computador , Conotoxinas/genética , Conotoxinas/farmacologia , Conotoxinas/toxicidade , Caramujo Conus/genética , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Transcriptoma/genéticaRESUMO
BACKGROUND: Emerging pathogens such as Zika, chikungunya, Ebola, and dengue viruses are serious threats to national and global health security. Accurate forecasts of emerging epidemics and their severity are critical to minimizing subsequent mortality, morbidity, and economic loss. The recent introduction of chikungunya and Zika virus to the Americas underscores the need for better methods for disease surveillance and forecasting. METHODS: To explore the suitability of current approaches to forecasting emerging diseases, the Defense Advanced Research Projects Agency (DARPA) launched the 2014-2015 DARPA Chikungunya Challenge to forecast the number of cases and spread of chikungunya disease in the Americas. Challenge participants (n=38 during final evaluation) provided predictions of chikungunya epidemics across the Americas for a six-month period, from September 1, 2014 to February 16, 2015, to be evaluated by comparison with incidence data reported to the Pan American Health Organization (PAHO). This manuscript presents an overview of the challenge and a summary of the approaches used by the winners. RESULTS: Participant submissions were evaluated by a team of non-competing government subject matter experts based on numerical accuracy and methodology. Although this manuscript does not include in-depth analyses of the results, cursory analyses suggest that simpler models appear to outperform more complex approaches that included, for example, demographic information and transportation dynamics, due to the reporting biases, which can be implicitly captured in statistical models. Mosquito-dynamics, population specific information, and dengue-specific information correlated best with prediction accuracy. CONCLUSION: We conclude that with careful consideration and understanding of the relative advantages and disadvantages of particular methods, implementation of an effective prediction system is feasible. However, there is a need to improve the quality of the data in order to more accurately predict the course of epidemics.
Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Surtos de Doenças/prevenção & controle , Controle de Infecções/organização & administração , Controle de Infecções/tendências , Medidas de Segurança/organização & administração , United States Department of Defense/organização & administração , Demografia , Dengue/epidemiologia , Dengue/prevenção & controle , Previsões/métodos , Humanos , Controle de Infecções/normas , Inovação Organizacional , Projetos de Pesquisa , Medidas de Segurança/normas , Medidas de Segurança/tendências , Estados Unidos/epidemiologia , United States Department of Defense/tendências , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controleRESUMO
Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[-]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/µL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[-] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[-] organisms, respectively. Coinfected children, particularly those with G[-] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[-] coinfection had higher IL-1ß and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[-] coinfected children, acts to reduce malaria parasite burden.
Assuntos
Bacteriemia/microbiologia , Bacteriemia/parasitologia , Coinfecção/sangue , Coinfecção/microbiologia , Coinfecção/parasitologia , Malária Falciparum/microbiologia , Malária Falciparum/parasitologia , Bacteriemia/sangue , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/sangue , Inflamação/microbiologia , Inflamação/parasitologia , Interferon-alfa/sangue , Interferon gama/sangue , Interleucina-10/sangue , Interleucina-12/sangue , Interleucina-15/sangue , Interleucina-17/sangue , Interleucina-4/sangue , Interleucina-5/sangue , Interleucina-7/sangue , Malária Falciparum/sangue , Masculino , Salmonella/patogenicidade , Staphylococcus aureus/patogenicidade , Fator de Necrose Tumoral alfa/sangueRESUMO
Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected â¼28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage.
Assuntos
Proteínas de Bactérias/metabolismo , Cyanothece/metabolismo , Proteoma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia por Troca Iônica , Cyanothece/genética , Expressão Gênica , Fixação de Nitrogênio , Fotossíntese , Filogenia , Proteoma/genética , Proteoma/isolamento & purificação , Espectrometria de Massas em TandemRESUMO
This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, compares the entire expressed whole blood host transcriptome between Kenyan children (3-48 mos.) with non-SMA (Hb ≥ 6.0 g/dL, n = 39) and SMA (n = 18). Differential expression analyses reveal 1403 up-regulated and 279 down-regulated transcripts in SMA, signifying impairments in host inflammasome activation, cell death, and innate immune and cellular stress responses. Immune cell profiling shows decreased memory responses, antigen presentation, and immediate pathogen clearance, suggesting an immature/improperly regulated immune response in SMA. Module repertoire analysis of blood-specific gene signatures identifies up-regulation of erythroid genes, enhanced neutrophil activation, and impaired inflammatory responses in SMA. Enrichment analyses converge on disruptions in cellular homeostasis and regulatory pathways for the ubiquitin-proteasome system, autophagy, and heme metabolism. Pathway analyses highlight activation in response to hypoxic conditions [Hypoxia Inducible Factor (HIF)-1 target and Reactive Oxygen Species (ROS) signaling] as a central theme in SMA. These signaling pathways are also top-ranking in protein abundance measures and a Ugandan SMA cohort with available transcriptomic data. Targeted RNA-Seq validation shows strong concordance with our entire expressed transcriptome data. These findings identify key molecular themes in SMA pathogenesis, offering potential targets for new malaria therapies.
Assuntos
Anemia , Transcriptoma , Humanos , Anemia/genética , Anemia/sangue , Pré-Escolar , Lactente , Feminino , Malária/sangue , Malária/genética , Quênia , Masculino , Perfilação da Expressão Gênica , Imunidade Inata/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/sangueRESUMO
Severe malarial anemia (SMA, Hb < 6.0 g/dL) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission zones. This study explored the entire expressed human transcriptome in whole blood from 66 Kenyan children with non-SMA (Hb ≥ 6.0 g/dL, n = 41) and SMA (n = 25), focusing on host immune response networks. RNA-seq analysis revealed 6862 differentially expressed genes, with equally distributed up-and down-regulated genes, indicating a complex host immune response. Deconvolution analyses uncovered leukocytic immune profiles indicative of a diminished antigenic response, reduced immune priming, and polarization toward cellular repair in SMA. Weighted gene co-expression network analysis revealed that immune-regulated processes are central molecular distinctions between non-SMA and SMA. A top dysregulated immune response signaling network in SMA was the HSP60-HSP70-TLR2/4 signaling pathway, indicating altered pathogen recognition, innate immune activation, stress responses, and antigen recognition. Validation with high-throughput gene expression from a separate cohort of Kenyan children (n = 50) with varying severities of malarial anemia (n = 38 non-SMA and n = 12 SMA) confirmed the RNA-seq findings. Proteomic analyses in 35 children with matched transcript and protein abundance (n = 19 non-SMA and n = 16 SMA) confirmed dysregulation in the HSP60-HSP70-TLR2/4 signaling pathway. Additionally, glutamine transporter and glutamine synthetase genes were differentially expressed, indicating altered glutamine metabolism in SMA. This comprehensive analysis underscores complex immune dysregulation and novel pathogenic features in SMA.
RESUMO
We present an ensemble transfer learning method to predict suicide from Veterans Affairs (VA) electronic medical records (EMR). A diverse set of base models was trained to predict a binary outcome constructed from reported suicide, suicide attempt, and overdose diagnoses with varying choices of study design and prediction methodology. Each model used twenty cross-sectional and 190 longitudinal variables observed in eight time intervals covering 7.5 years prior to the time of prediction. Ensembles of seven base models were created and fine-tuned with ten variables expected to change with study design and outcome definition in order to predict suicide and combined outcome in a prospective cohort. The ensemble models achieved c-statistics of 0.73 on 2-year suicide risk and 0.83 on the combined outcome when predicting on a prospective cohort of [Formula: see text] 4.2 M veterans. The ensembles rely on nonlinear base models trained using a matched retrospective nested case-control (Rcc) study cohort and show good calibration across a diversity of subgroups, including risk strata, age, sex, race, and level of healthcare utilization. In addition, a linear Rcc base model provided a rich set of biological predictors, including indicators of suicide, substance use disorder, mental health diagnoses and treatments, hypoxia and vascular damage, and demographics.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Veteranos , Humanos , Veteranos/psicologia , Estudos Retrospectivos , Estudos Transversais , Estudos Prospectivos , Tentativa de Suicídio , Aprendizado de MáquinaRESUMO
Importance: Suicide is a leading cause of death; however, the molecular genetic basis of suicidal thoughts and behaviors (SITB) remains unknown. Objective: To identify novel, replicable genomic risk loci for SITB. Design, Setting, and Participants: This genome-wide association study included 633â¯778 US military veterans with and without SITB, as identified through electronic health records. GWAS was performed separately by ancestry, controlling for sex, age, and genetic substructure. Cross-ancestry risk loci were identified through meta-analysis. Study enrollment began in 2011 and is ongoing. Data were analyzed from November 2021 to August 2022. Main Outcome and Measures: SITB. Results: A total of 633â¯778 US military veterans were included in the analysis (57â¯152 [9%] female; 121â¯118 [19.1%] African ancestry, 8285 [1.3%] Asian ancestry, 452â¯767 [71.4%] European ancestry, and 51â¯608 [8.1%] Hispanic ancestry), including 121â¯211 individuals with SITB (19.1%). Meta-analysis identified more than 200 GWS (P < 5 × 10-8) cross-ancestry risk single-nucleotide variants for SITB concentrated in 7 regions on chromosomes 2, 6, 9, 11, 14, 16, and 18. Top single-nucleotide variants were largely intronic in nature; 5 were independently replicated in ISGC, including rs6557168 in ESR1, rs12808482 in DRD2, rs77641763 in EXD3, rs10671545 in DCC, and rs36006172 in TRAF3. Associations for FBXL19 and AC018880.2 were not replicated. Gene-based analyses implicated 24 additional GWS cross-ancestry risk genes, including FURIN, TSNARE1, and the NCAM1-TTC12-ANKK1-DRD2 gene cluster. Cross-ancestry enrichment analyses revealed significant enrichment for expression in brain and pituitary tissue, synapse and ubiquitination processes, amphetamine addiction, parathyroid hormone synthesis, axon guidance, and dopaminergic pathways. Seven other unique European ancestry-specific GWS loci were identified, 2 of which (POM121L2 and METTL15/LINC02758) were replicated. Two additional GWS ancestry-specific loci were identified within the African ancestry (PET112/GATB) and Hispanic ancestry (intergenic locus on chromosome 4) subsets, both of which were replicated. No GWS loci were identified within the Asian ancestry subset; however, significant enrichment was observed for axon guidance, cyclic adenosine monophosphate signaling, focal adhesion, glutamatergic synapse, and oxytocin signaling pathways across all ancestries. Within the European ancestry subset, genetic correlations (r > 0.75) were observed between the SITB phenotype and a suicide attempt-only phenotype, depression, and posttraumatic stress disorder. Additionally, polygenic risk score analyses revealed that the Million Veteran Program polygenic risk score had nominally significant main effects in 2 independent samples of veterans of European and African ancestry. Conclusions and Relevance: The findings of this analysis may advance understanding of the molecular genetic basis of SITB and provide evidence for ESR1, DRD2, TRAF3, and DCC as cross-ancestry candidate risk genes. More work is needed to replicate these findings and to determine if and how these genes might impact clinical care.
Assuntos
Veteranos , Humanos , Feminino , Masculino , Ideação Suicida , Estudo de Associação Genômica Ampla , Fator 3 Associado a Receptor de TNF/genética , Loci Gênicos/genética , Nucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética , Proteínas , Proteínas Serina-Treonina Quinases/genéticaRESUMO
Importance: Primary prevention of atherosclerotic cardiovascular disease (ASCVD) relies on risk stratification. Genome-wide polygenic risk scores (PRSs) are proposed to improve ASCVD risk estimation. Objective: To determine whether genome-wide PRSs for coronary artery disease (CAD) and acute ischemic stroke improve ASCVD risk estimation with traditional clinical risk factors in an ancestrally diverse midlife population. Design, Setting, and Participants: This was a prognostic analysis of incident events in a retrospectively defined longitudinal cohort conducted from January 1, 2011, to December 31, 2018. Included in the study were adults free of ASCVD and statin naive at baseline from the Million Veteran Program (MVP), a mega biobank with genetic, survey, and electronic health record data from a large US health care system. Data were analyzed from March 15, 2021, to January 5, 2023. Exposures: PRSs for CAD and ischemic stroke derived from cohorts of largely European descent and risk factors, including age, sex, systolic blood pressure, total cholesterol, high-density lipoprotein (HDL) cholesterol, smoking, and diabetes status. Main Outcomes and Measures: Incident nonfatal myocardial infarction (MI), ischemic stroke, ASCVD death, and composite ASCVD events. Results: A total of 79â¯151 participants (mean [SD] age, 57.8 [13.7] years; 68â¯503 male [86.5%]) were included in the study. The cohort included participants from the following harmonized genetic ancestry and race and ethnicity categories: 18â¯505 non-Hispanic Black (23.4%), 6785 Hispanic (8.6%), and 53â¯861 non-Hispanic White (68.0%) with a median (5th-95th percentile) follow-up of 4.3 (0.7-6.9) years. From 2011 to 2018, 3186 MIs (4.0%), 1933 ischemic strokes (2.4%), 867 ASCVD deaths (1.1%), and 5485 composite ASCVD events (6.9%) were observed. CAD PRS was associated with incident MI in non-Hispanic Black (hazard ratio [HR], 1.10; 95% CI, 1.02-1.19), Hispanic (HR, 1.26; 95% CI, 1.09-1.46), and non-Hispanic White (HR, 1.23; 95% CI, 1.18-1.29) participants. Stroke PRS was associated with incident stroke in non-Hispanic White participants (HR, 1.15; 95% CI, 1.08-1.21). A combined CAD plus stroke PRS was associated with ASCVD deaths among non-Hispanic Black (HR, 1.19; 95% CI, 1.03-1.17) and non-Hispanic (HR, 1.11; 95% CI, 1.03-1.21) participants. The combined PRS was also associated with composite ASCVD across all ancestry groups but greater among non-Hispanic White (HR, 1.20; 95% CI, 1.16-1.24) than non-Hispanic Black (HR, 1.11; 95% CI, 1.05-1.17) and Hispanic (HR, 1.12; 95% CI, 1.00-1.25) participants. Net reclassification improvement from adding PRS to a traditional risk model was modest for the intermediate risk group for composite CVD among men (5-year risk >3.75%, 0.38%; 95% CI, 0.07%-0.68%), among women, (6.79%; 95% CI, 3.01%-10.58%), for age older than 55 years (0.25%; 95% CI, 0.03%-0.47%), and for ages 40 to 55 years (1.61%; 95% CI, -0.07% to 3.30%). Conclusions and Relevance: Study results suggest that PRSs derived predominantly in European samples were statistically significantly associated with ASCVD in the multiancestry midlife and older-age MVP cohort. Overall, modest improvement in discrimination metrics were observed with addition of PRSs to traditional risk factors with greater magnitude in women and younger age groups.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença da Artéria Coronariana , AVC Isquêmico , Infarto do Miocárdio , Acidente Vascular Cerebral , Veteranos , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Aterosclerose/epidemiologia , Infarto do Miocárdio/epidemiologia , Acidente Vascular Cerebral/epidemiologia , ColesterolRESUMO
BACKGROUND: Genetic factors play an important role in prostate cancer (PCa) susceptibility. OBJECTIVE: To discover common genetic variants contributing to the risk of PCa in men of African ancestry. DESIGN, SETTING, AND PARTICIPANTS: We conducted a meta-analysis of ten genome-wide association studies consisting of 19378 cases and 61620 controls of African ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Common genotyped and imputed variants were tested for their association with PCa risk. Novel susceptibility loci were identified and incorporated into a multiancestry polygenic risk score (PRS). The PRS was evaluated for associations with PCa risk and disease aggressiveness. RESULTS AND LIMITATIONS: Nine novel susceptibility loci for PCa were identified, of which seven were only found or substantially more common in men of African ancestry, including an African-specific stop-gain variant in the prostate-specific gene anoctamin 7 (ANO7). A multiancestry PRS of 278 risk variants conferred strong associations with PCa risk in African ancestry studies (odds ratios [ORs] >3 and >5 for men in the top PRS decile and percentile, respectively). More importantly, compared with men in the 40-60% PRS category, men in the top PRS decile had a significantly higher risk of aggressive PCa (OR = 1.23, 95% confidence interval = 1.10-1.38, p = 4.4 × 10-4). CONCLUSIONS: This study demonstrates the importance of large-scale genetic studies in men of African ancestry for a better understanding of PCa susceptibility in this high-risk population and suggests a potential clinical utility of PRS in differentiating between the risks of developing aggressive and nonaggressive disease in men of African ancestry. PATIENT SUMMARY: In this large genetic study in men of African ancestry, we discovered nine novel prostate cancer (PCa) risk variants. We also showed that a multiancestry polygenic risk score was effective in stratifying PCa risk, and was able to differentiate risk of aggressive and nonaggressive disease.
Assuntos
Predisposição Genética para Doença , Neoplasias da Próstata , Masculino , Humanos , Estudo de Associação Genômica Ampla , Neoplasias da Próstata/genética , Neoplasias da Próstata/epidemiologia , Fatores de Risco , População Negra/genéticaRESUMO
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Assuntos
Predisposição Genética para Doença , Neoplasias da Próstata , Humanos , Masculino , População Negra/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Fatores de Risco , População Branca/genética , Povo Asiático/genéticaRESUMO
BACKGROUND: There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. RESULTS: We use a Motif Binding Geometries (MBG) approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA), and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs) to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. CONCLUSIONS: Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.
Assuntos
Proteínas de Bactérias/química , Escherichia coli/metabolismo , Modelos Moleculares , Multimerização Proteica , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/metabolismoRESUMO
Protein functions require conformational motions. We show here that the dominant conformational motions are slaved by the hydration shell and the bulk solvent. The protein contributes the structure necessary for function. We formulate a model that is based on experiments, insights from the physics of glass-forming liquids, and the concepts of a hierarchically organized energy landscape. To explore the effect of external fluctuations on protein dynamics, we measure the fluctuations in the bulk solvent and the hydration shell with broadband dielectric spectroscopy and compare them with internal fluctuations measured with the Mössbauer effect and neutron scattering. The result is clear. Large-scale protein motions are slaved to the fluctuations in the bulk solvent. They are controlled by the solvent viscosity, and are absent in a solid environment. Internal protein motions are slaved to the beta fluctuations of the hydration shell, are controlled by hydration, and are absent in a dehydrated protein. The model quantitatively predicts the rapid increase of the mean-square displacement above approximately 200 K, shows that the external beta fluctuations determine the temperature- and time-dependence of the passage of carbon monoxide through myoglobin, and explains the nonexponential time dependence of the protein relaxation after photodissociation.
Assuntos
Modelos Moleculares , Proteínas/química , Animais , Monóxido de Carbono/metabolismo , Humanos , Cinética , Movimento (Física) , Mioglobina/química , Mioglobina/metabolismo , Conformação Proteica , Solventes , Temperatura , Viscosidade , Água/químicaRESUMO
Plasmodium falciparum (Pf) malaria is among the leading causes of childhood morbidity and mortality worldwide. During a natural infection, ingestion of the malarial parasite product, hemozoin (PfHz), by circulating phagocytic cells induces dysregulation in innate immunity and enhances malaria pathogenesis. Treatment of cultured peripheral blood mononuclear cells (PBMCs) from healthy, malaria-naïve donors with physiological concentrations of PfHz can serve as an in vitro model to investigate cellular processes. Although disruptions in host ubiquitination processes are central to the pathogenesis of many diseases, this system remains unexplored in malaria. As such, we investigated the impact of PfHz on the temporal expression patterns of 84 genes involved in ubiquitination processes. Donor PBMCs were cultured in the absence or presence of PfHz for 3-, 9-, and 24 h. Stimulation with PfHz for 3 h did not significantly alter gene expression. Incubation for 9 h, however, elicited significant changes for 6 genes: 4 were down-regulated (FBXO4, NEDD8, UBE2E3, and UBE2W) and 2 were up-regulated (HERC5 and UBE2J1). PfHz treatment for 24 h significantly altered expression for 14 genes: 12 were down-regulated (ANAPC11, BRCC3, CUL4B, FBXO4, MIB1, SKP2, TP53, UBA2, UBA3, UBE2G1, UBE2G2, and WWP1), while 2 were up-regulated (UBE2J1 and UBE2Z). Collectively, these results demonstrate that phagocytosis of PfHz by PBMCs elicits temporal changes in the transcriptional profiles of genes central to host ubiquitination processes. Results presented here suggest that disruptions in ubiquitination may be a previously undiscovered feature of malaria pathogenesis.
RESUMO
SARS-CoV-2 is the virus responsible for the COVID-19 pandemic and catastrophic, worldwide health and economic impacts. The spike protein on the viral surface is responsible for viral entry into the host cell. The binding of spike protein to the host cell receptor ACE2 is the first step leading to fusion of the host and viral membranes. Despite the vast amount of structure data that has been generated for the spike protein of SARS-CoV-2, many of the detailed structures of the spike protein in different stages of the fusion pathway are unknown, leaving a wealth of potential drug-target space unexplored. The atomic-scale structure of the complete S2 segment, as well as the complete fusion intermediate are also unknown and represent major gaps in our knowledge of the infectious pathway of SAR-CoV-2. The conformational changes of the spike protein during this process are similarly not well understood. Here we present structures of the spike protein at different stages of the fusion process. With the transitions being a necessary step before the receptor binding, we propose sites along the transition pathways as potential targets for drug development.