Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(5): 1565-70, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605911

RESUMO

Accumulation of protein- and lipid-containing deposits external to the retinal pigment epithelium (RPE) is common in the aging eye, and has long been viewed as the hallmark of age-related macular degeneration (AMD). The cause for the accumulation and retention of molecules in the sub-RPE space, however, remains an enigma. Here, we present fluorescence microscopy and X-ray diffraction evidence for the formation of small (0.5-20 µm in diameter), hollow, hydroxyapatite (HAP) spherules in Bruch's membrane in human eyes. These spherules are distinct in form, placement, and staining from the well-known calcification of the elastin layer of the aging Bruch's membrane. Secondary ion mass spectrometry (SIMS) imaging confirmed the presence of calcium phosphate in the spherules and identified cholesterol enrichment in their core. Using HAP-selective fluorescent dyes, we show that all types of sub-RPE deposits in the macula, as well as in the periphery, contain numerous HAP spherules. Immunohistochemical labeling for proteins characteristic of sub-RPE deposits, such as complement factor H, vitronectin, and amyloid beta, revealed that HAP spherules were coated with these proteins. HAP spherules were also found outside the sub-RPE deposits, ready to bind proteins at the RPE/choroid interface. Based on these results, we propose a novel mechanism for the growth, and possibly even the formation, of sub-RPE deposits, namely, that the deposit growth and formation begin with the deposition of insoluble HAP shells around naturally occurring, cholesterol-containing extracellular lipid droplets at the RPE/choroid interface; proteins and lipids then attach to these shells, initiating or supporting the growth of sub-RPE deposits.


Assuntos
Envelhecimento/metabolismo , Durapatita/metabolismo , Olho/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Humanos , Microscopia de Fluorescência , Difração de Raios X
2.
Phys Chem Chem Phys ; 18(47): 32302-32307, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27849069

RESUMO

Electronic devices made from organic materials have the potential to support a more ecologically friendly and affordable future. However, the ability to fabricate devices with well-defined and reproducible electrical and optical properties is hindered by the sensitivity to the presence of chemical impurities. Oxygen in particular is an impurity that can trap electrons and modify conductive properties of some organic materials. Until now the 3-dimensional profiling of oxygen species in organic semiconductors has been elusive and the effect of oxygen remains disputed. In this study we map out high-spatial resolution 3-dimensional distributions of oxygen inclusions near the surface of single crystal rubrene, using Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Channels of diffused oxygen are found extending from uniform oxygen inclusion layers at the surface. These channels extend to depths in excess of 1.8 µm and act as an entry point for oxygen to diffuse along the ab-plane of the crystal with at least some of the diffused oxygen molecularly binding to rubrene. Our investigation of surfaces at different stages of evolution reveals the extent of oxygen inclusion, which affects rubrene's optical and transport properties, and is consequently of importance for the reliability and longevity of devices.

3.
Chemistry ; 20(26): 8149-60, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24838668

RESUMO

Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol-gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ-glutamic acid) (γ-PGA) was introduced into the sol-gel process to produce a hybrid of γ-PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol-gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low-temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2 ), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid-state NMR spectroscopy, which showed ionic cross-linking of γ-PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross-linking of γ-PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).


Assuntos
Materiais Biocompatíveis/química , Cálcio/química , Ácido Poliglutâmico/análogos & derivados , Dióxido de Silício/química , Ácido Poliglutâmico/química
4.
Environ Sci Technol ; 47(19): 11232-40, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988335

RESUMO

The growing use of silver nanoparticles (AgNPs) in consumer products has raised concerns about their potential impact on the environment and human health. Whether AgNPs dissolve and release Ag(+) ions, or coarsen to form large aggregates, is critical in determining their potential toxicity. In this work, the stability of AgNPs in dipalmitoylphosphatidylcholine (DPPC), the major component of pulmonary surfactant, was investigated as a function of pH. Spherical, citrate-capped AgNPs with average diameters of 14 ± 1.6 nm (n = 200) were prepared by a chemical bath reduction. The kinetics of Ag(+) ion release was strongly pH-dependent. After 14 days of incubation in sodium perchlorate (NaClO4) or perchloric acid (HClO4) solutions, the total fraction of AgNPs dissolved varied from ∼10% at pH 3, to ∼2% at pH 5, with negligible dissolution at pH 7. A decrease in pH from 7 to 3 also promoted particle aggregation and coarsening. DPPC (100 mg·L(-1)) delayed the release of Ag(+) ions, but did not significantly alter the total amount of Ag(+) released after two weeks. In addition, DPPC improved the dispersion of the AgNPs and inhibited aggregation and coarsening. TEM images revealed that the AgNPs were coated with a DPPC layer serving as a semipermeable layer. Hence, lung lining fluid, particularly DPPC, can modify the aggregation state and kinetics of Ag(+) ion release of inhaled AgNPs in the lung. These observations have important implications for predicting the potential reactivity of AgNPs in the lung and the environment.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Nanopartículas Metálicas/química , Surfactantes Pulmonares/química , Prata/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão
5.
Nanotechnology ; 21(2): 025304, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955611

RESUMO

We report a new method for introducing metal atoms into silicon wafers, using negligible thermal budget. Molecular thin films are irradiated with ultra-violet light releasing metal species into the semiconductor substrate. Secondary ion mass spectrometry and x-ray absorption spectroscopy show that Mn is incorporated into Si as an interstitial dopant. We propose that our method can form the basis of a generic low-cost, low-temperature technology that could lead to the creation of ordered dopant arrays.


Assuntos
Cristalização/métodos , Manganês/química , Nanoestruturas/química , Nanotecnologia/métodos , Silício/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Manganês/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Silício/efeitos da radiação , Propriedades de Superfície/efeitos da radiação , Raios Ultravioleta
6.
Sci Rep ; 7(1): 10728, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878364

RESUMO

ToF-SIMS has been increasingly widely used in recent years to look at biological matrices, in particular for biomedical research, although there is still a lot of development needed to maximise the value of this technique in the life sciences. The main issue for biological matrices is the complexity of the mass spectra and therefore the difficulty to specifically and precisely detect analytes in the biological sample. Here we evaluated the use of ToF-SIMS in the agrochemical field, which remains a largely unexplored area for this technique. We profiled a large number of biocidal active ingredients (herbicides, fungicides, and insecticides); we then selected fludioxonil, a halogenated fungicide, as a model compound for more detailed study, including the effect of co-occurring biomolecules on detection limits. There was a wide range of sensitivity of the ToF-SIMS for the different active ingredient compounds, but fludioxonil was readily detected in real-world samples (wheat seeds coated with a commercial formulation). Fludioxonil did not penetrate the seed to any great depth, but was largely restricted to a layer coating the seed surface. ToF-SIMS has clear potential as a tool for not only detecting biocides in biological samples, but also mapping their distribution.

7.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744481

RESUMO

Bacterial biofilms are groups of bacteria that exist within a self-produced extracellular matrix, adhering to each other and usually to a surface. They grow on medical equipment and inserts such as catheters and are responsible for many persistent infections throughout the body, as they can have high resistance to many antimicrobials. Pseudomonas aeruginosa is an opportunistic pathogen that can cause both acute and chronic infections and is used as a model for research into biofilms. Direct biochemical methods of imaging of molecules in bacterial biofilms are of high value in gaining a better understanding of the fundamental biology of biofilms and biochemical gradients within them. Time of flight-secondary-ion mass spectrometry (TOF-SIMS) is one approach, which combines relatively high spatial resolution and sensitivity and can perform depth profiling analysis. It has been used to analyze bacterial biofilms but has not yet been used to study the distribution of antimicrobials (including antibiotics and the antimicrobial metal gallium) within biofilms. Here we compared two methods of imaging of the interior structure of P. aeruginosa in biological samples using TOF-SIMS, looking at both antimicrobials and endogenous biochemicals: cryosectioning of tissue samples and depth profiling to give pseudo-three-dimensional (pseudo-3D) images. The sample types included both simple biofilms grown on glass slides and bacteria growing in tissues in an ex vivo pig lung model. The two techniques for the 3D imaging of biofilms are potentially valuable complementary tools for analyzing bacterial infection. IMPORTANCE Modern analytical techniques are becoming increasingly important in the life sciences; imaging mass spectrometry offers the opportunity to gain unprecedented amounts of information on the distribution of chemicals in samples-both xenobiotics and endogenous compounds. In particular, simultaneous imaging of antibiotics (and other antimicrobial compounds) and bacterium-derived metabolites in complex biological samples could be very important in the future for helping to understand how sample matrices impact the survival of bacteria under antibiotic challenge. We have shown that an imaging mass spectrometric technique, TOF-SIMS, will be potentially extremely valuable for this kind of research in the future.

8.
ACS Appl Mater Interfaces ; 8(9): 5961-71, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26864503

RESUMO

In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER.

9.
J Mater Chem B ; 3(38): 7560-7576, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262640

RESUMO

Inorganic/organic sol-gel hybrids have nanoscale co-networks of organic and inorganic components that give them the unique potential of tailored mechanical properties and controlled biodegradation in tissue engineering applications. Here, silica/chitosan hybrid scaffolds with oriented structures were fabricated through the sol-gel method with a unidirectional freeze casting process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) was used to obtain covalent inorganic/organic coupling. Process variables were investigated such as cooling rate, GPTMS and inorganic content, which can be used to tailor the mechanical properties and hybrid chemical coupling. Structural characterization and dissolution tests confirmed the covalent cross-linking of the chitosan and the silica network in hybrids. The scaffolds had a directional lamellar structure along the freezing direction and a cellular morphology perpendicular to the freezing direction. Compression testing showed that the scaffolds with 60 wt% organic were flexible and elastomeric perpendicular to the freezing direction whilst behaving in an elastic-brittle fashion parallel to the freezing direction. The compressive strengths are about one order of magnitude higher in the latter direction reaching values of the order of 160 kPa. This behaviour provides potential for clinicians to be able to squeeze the materials to fit tissue defect sites while providing some mechanical support from the other direction.

10.
Biomed Mater ; 9(1): 015013, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24457328

RESUMO

Understanding the distribution of critical elements (e.g. silicon and calcium) within silica-based bone scaffolds synthesized by different methods is central to the optimization of these materials. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to determine this information due to its very high surface sensitivity and its ability to map all the elements and compounds in the periodic table with high spatial resolution. The SIMS image data can also be combined with depth profiles to construct three-dimensional chemical maps. However, the scaffolds have interconnected pore networks, which are very challenging structures for the SIMS technique. To overcome this problem two experimental methodologies have been developed. The first method involved the use of the focused ion beam technique to obtain clear images of the regions of interest and subsequently mark them by introducing fiducial marks; the samples were then analysed using the ToF-SIMS technique to yield the chemical analyses of the regions of interest. The second method involved impregnating the pores using a suitable reagent so that a flat surface could be achieved, and this was followed by secondary ion mapping and 3D chemical imaging with ToF-SIMS. The samples used in this work were sol-gel 70S30C foam and electrospun fibres and calcium-containing silica/gelatin hybrid scaffolds. The results demonstrate the feasibility of both these experimental methodologies and indicate that these methods can provide an opportunity to compare various artificial bone scaffolds, which will be of help in improving scaffold synthesis and processing routes. The techniques are also transferable to many other types of porous material.


Assuntos
Osso e Ossos/patologia , Porosidade , Espectrometria de Massa de Íon Secundário , Alicerces Teciduais/química , Cálcio/química , Gelatina/química , Vidro/química , Íons/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Dióxido de Silício/química
11.
Acta Biomater ; 9(8): 7662-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23632373

RESUMO

Bioactive glasses and inorganic/organic hybrids have great potential as biomedical implant materials. Sol-gel hybrids with interpenetrating networks of silica and biodegradable polymers can combine the bioactive properties of a glass with the toughness of a polymer. However, traditional calcium sources such as calcium nitrate and calcium chloride are unsuitable for hybrids. In this study calcium was incorporated by chelation to the polymer component. The calcium salt form of poly(γ-glutamic acid) (γCaPGA) was synthesized for use as both a calcium source and as the biodegradable toughening component of the hybrids. Hybrids of 40wt.% γCaPGA were successfully formed and had fine scale integration of Ca and Si ions, according to secondary ion mass spectrometry imaging, indicating a homogeneous distribution of organic and inorganic components. (29)Si magic angle spinning nuclear magnetic resonance data demonstrated that the network connectivity was unaltered with changing polymer molecular weight, as there was no perturbation to the overall Si speciation and silica network formation. Upon immersion in simulated body fluid a hydroxycarbonate apatite surface layer formed on the hybrids within 1week. The polymer molecular weight (Mw 30-120kDa) affected the mechanical properties of the resulting hybrids, but all hybrids had large strains to failure, >26%, and compressive strengths, in excess of 300MPa. The large strain to failure values showed that γCaPGA hybrids exhibited non-brittle behaviour whilst also incorporating calcium. Thus calcium incorporation by chelation to the polymer component is justified as a novel approach in hybrids for biomedical materials.


Assuntos
Apatitas/síntese química , Materiais Biocompatíveis/síntese química , Líquidos Corporais/química , Cálcio/química , Carbonatos/síntese química , Ácido Poliglutâmico/análogos & derivados , Dióxido de Silício/química , Quelantes/química , Teste de Materiais , Transição de Fase , Ácido Poliglutâmico/química
12.
J Mech Behav Biomed Mater ; 4(3): 331-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21316621

RESUMO

This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise ß-tri-calcium phosphate (ß-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated with multi-walled carbon nanotubes (MWCNTs) or functionalized MWCNTs (MWCNTs-OH and MWCNTs-COOH). Scanning electron microscopy (SEM), compressive strength tests, injectability tests, Fourier transform infrared spectroscopy and X-ray diffraction were used to evaluate the properties of the final products. Compressive strength tests and SEM observations demonstrated particularly that the concomitant admixture of BSA and MWCNT improved the mechanical properties, resulting in stronger CPC composites. The presence of MWCNTs and BSA influenced the morphology of the hydroxyapatite (HA) crystals in the CPC matrix. BSA was found to act as a promoter of HA growth when bounded to the surface of CPC grains. MWCNT-OH-containing composites exhibited the highest compressive strengths (16.3 MPa), being in the range of values for trabecular bone (2-12 MPa).


Assuntos
Substitutos Ósseos/química , Fosfatos de Cálcio/química , Cimentos Dentários/química , Fenômenos Mecânicos , Nanotubos de Carbono/química , Soroalbumina Bovina/química , Animais , Substitutos Ósseos/administração & dosagem , Bovinos , Força Compressiva , Durapatita/metabolismo , Injeções , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
13.
Nature ; 415(6873): 770-4, 2002 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11845203

RESUMO

Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA