Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 20(23): A864-78, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23326834

RESUMO

Simulations of thin film (~2.5 µm thick) InGaAs/GaAs quantum well solar cells with various back side reflective and planar, symmetric scattering structures used for light trapping have been performed using rigorous coupled-wave analysis. Two-dimensional periodic metal/dielectric scattering structures were numerically optimized for Airmass 0 photocurrent generation for each device structure. The simulation results indicate that the absorption spectra of devices with both reflective and scattering structures are largely determined by the Fabry-Perot resonance characteristics of the thin film device structure. The scattering structures substantially increase absorption in the quantum wells at wavelengths longer than the GaAs absorption edge through a combination of coupling to modes of the thin film device structures and by reducing parasitic metal absorption compared to planar metal reflectors. For Airmass 0 illumination and 100% carrier collection, the estimated short-circuit current density of devices with In(0.3)Ga(0.7)As/GaAs quantum wells improves by up to 4.6 mA/cm(2) (15%) relative to a GaAs homojunction device, with the improvement resulting approximately equally from scattering of light into thin film modes and reduction of metal absorption compared to a planar reflective layer.

2.
Opt Express ; 20 Suppl 6: A864-78, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187663

RESUMO

Simulations of thin film (~2.5 µm thick) InGaAs/GaAs quantum well solar cells with various back side reflective and planar, symmetric scattering structures used for light trapping have been performed using rigorous coupled-wave analysis. Two-dimensional periodic metal/dielectric scattering structures were numerically optimized for Airmass 0 photocurrent generation for each device structure. The simulation results indicate that the absorption spectra of devices with both reflective and scattering structures are largely determined by the Fabry-Perot resonance characteristics of the thin film device structure. The scattering structures substantially increase absorption in the quantum wells at wavelengths longer than the GaAs absorption edge through a combination of coupling to modes of the thin film device structures and by reducing parasitic metal absorption compared to planar metal reflectors. For Airmass 0 illumination and 100% carrier collection, the estimated short-circuit current density of devices with In(0.3)Ga(0.7)As/GaAs quantum wells improves by up to 4.6 mA/cm(2) (15%) relative to a GaAs homojunction device, with the improvement resulting approximately equally from scattering of light into thin film modes and reduction of metal absorption compared to a planar reflective layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA