Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432637

RESUMO

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Feminino , Humanos , Masculino , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Linhagem Celular , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Citocinese/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
3.
J Biol Chem ; 298(9): 102320, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933016

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a fatal brain disorder featuring cerebellar neurodegeneration leading to spasticity and ataxia. This disease is caused by mutations in the SACS gene that encodes sacsin, a massive 4579-amino acid protein with multiple modular domains. However, molecular details of the function of sacsin are not clear. Here, using live cell imaging and biochemistry, we demonstrate that sacsin binds to microtubules and regulates microtubule dynamics. Loss of sacsin function in various cell types, including knockdown and KO primary neurons and patient fibroblasts, leads to alterations in lysosomal transport, positioning, function, and reformation following autophagy. Each of these phenotypic changes is consistent with altered microtubule dynamics. We further show the effects of sacsin are mediated at least in part through interactions with JIP3, an adapter for microtubule motors. These data reveal a new function for sacsin that explains its previously reported roles and phenotypes.


Assuntos
Proteínas de Choque Térmico , Lisossomos , Microtúbulos , Espasticidade Muscular , Ataxias Espinocerebelares , Sequência de Aminoácidos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Espasticidade Muscular/genética , Espasticidade Muscular/metabolismo , Mutação , Ataxias Espinocerebelares/congênito , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
4.
J Biol Chem ; 296: 100306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476648

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Cadeias Pesadas de Clatrina/genética , Endocitose/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus/efeitos dos fármacos , Células A549 , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Chlorocebus aethiops , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/virologia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Hidrazonas/farmacologia , Lentivirus/genética , Lentivirus/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Sulfonamidas/farmacologia , Tiazolidinas/farmacologia , Células Vero
5.
J Biol Chem ; 293(12): 4566-4574, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29352104

RESUMO

Rab GTPases are key regulators of membrane trafficking, and many are activated by guanine nucleotide exchange factors bearing a differentially expressed in normal and neoplastic cells (DENN) domain. By activating the small GTPase Rab12, DENN domain-containing protein 3 (DENND3) functions in autophagy. Here, we identified a structural domain (which we name PHenn) containing a pleckstrin homology subdomain that binds actin and is required for DENND3 function in autophagy. We found that a hydrophobic patch on an extended ß-turn of the PHenn domain mediates an intramolecular interaction with the DENN domain of DENND3. We also show that DENND3 binds actin through a surface of positively charged residues on the PHenn domain. Substitutions that blocked either DENN or actin binding compromised the role of DENND3 in autophagy. These results provide new mechanistic insight into the structural determinants regulating DENND3 in autophagy and lay the foundation for future investigations of the DENN protein family.


Assuntos
Actinas/metabolismo , Autofagia , Proteínas Sanguíneas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfoproteínas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/química , Actinas/genética , Proteínas Sanguíneas/química , Cristalografia por Raios X , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Fosfoproteínas/química , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
6.
J Biol Chem ; 293(33): 12832-12842, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29945973

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disease that is caused by mutations in the SACS gene. The product of this gene is a very large 520-kDa cytoplasmic protein, sacsin, with a ubiquitin-like (Ubl) domain at the N terminus followed by three large sacsin internal repeat (SIRPT) supradomains and C-terminal J and HEPN domains. The SIRPTs are predicted to contain Hsp90-like domains, suggesting a potential chaperone activity. In this work, we report the structures of the Hsp90-like Sr1 domain of SIRPT1 and the N-terminal Ubl domain determined at 1.55- and 2.1-Å resolutions, respectively. The Ubl domain crystallized as a swapped dimer that could be relevant in the context of full-length protein. The Sr1 domain displays the Bergerat protein fold with a characteristic nucleotide-binding pocket, although it binds nucleotides with very low affinity. The Sr1 structure reveals that ARSACS-causing missense mutations (R272H, R272C, and T201K) disrupt protein folding, most likely leading to sacsin degradation. This work lends structural support to the view of sacsin as a molecular chaperone and provides a framework for future studies of this protein.


Assuntos
Proteínas de Choque Térmico/química , Mutação de Sentido Incorreto , Dobramento de Proteína , Substituição de Aminoácidos , Cristalografia por Raios X , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Espasticidade Muscular/genética , Espasticidade Muscular/metabolismo , Domínios Proteicos , Ataxias Espinocerebelares/congênito , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
7.
Am J Hum Genet ; 99(6): 1359-1367, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866705

RESUMO

Epileptic encephalopathies are a catastrophic group of epilepsies characterized by refractory seizures and cognitive arrest, often resulting from abnormal brain development. Here, we have identified an epileptic encephalopathy additionally featuring cerebral calcifications and coarse facial features caused by recessive loss-of-function mutations in DENND5A. DENND5A contains a DENN domain, an evolutionarily ancient enzymatic module conferring guanine nucleotide exchange factor (GEF) activity to multiple proteins serving as GEFs for Rabs, which are key regulators of membrane trafficking. DENND5A is detected predominantly in neuronal tissues, and its highest levels occur during development. Knockdown of DENND5A leads to striking alterations in neuronal development. Mechanistically, these changes appear to result from upregulation of neurotrophin receptors, leading to enhanced downstream signaling. Thus, we have identified a link between a DENN domain protein and neuronal development, dysfunction of which is responsible for a form of epileptic encephalopathy.


Assuntos
Encéfalo/patologia , Epilepsia/genética , Mutação , Proteínas rab de Ligação ao GTP/genética , Adolescente , Animais , Criança , Consanguinidade , Feminino , Fatores de Troca do Nucleotídeo Guanina , Humanos , Masculino , Neurônios/metabolismo , Células PC12 , Linhagem , Ratos
8.
EMBO Rep ; 18(12): 2119-2130, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030480

RESUMO

Epidermal growth factor (EGF) activates the EGF receptor (EGFR) and stimulates its internalization and trafficking to lysosomes for degradation. However, a percentage of EGFR undergoes ligand-independent endocytosis and is rapidly recycled back to the plasma membrane. Importantly, alterations in EGFR recycling are a common hallmark of cancer, and yet, our understanding of the machineries controlling the fate of endocytosed EGFR is incomplete. Intersectin-s is a multi-domain adaptor protein that is required for internalization of EGFR Here, we discover that intersectin-s binds DENND2B, a guanine nucleotide exchange factor for the exocytic GTPase Rab13, and this interaction promotes recycling of ligand-free EGFR to the cell surface. Intriguingly, upon EGF treatment, DENND2B is phosphorylated by protein kinase D and dissociates from intersectin-s, allowing for receptor targeting to degradation. Our study thus reveals a novel mechanism controlling the fate of internalized EGFR with important implications for cancer.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Membrana Celular/metabolismo , Endocitose , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Neoplasias/fisiopatologia , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Supressoras de Tumor/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
J Biol Chem ; 292(17): 7274-7282, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249939

RESUMO

The Rab family of small GTPases functions in multiple aspects of cellular membrane trafficking. Proteins bearing a differentially expressed in normal and neoplastic cells (DENN) domain have emerged as the largest family of Rab-activating guanine nucleotide exchange factors (GEFs). Rab12 functions in the initiation of starvation-induced autophagy, and our previous work revealed that its activator, DENN domain-containing protein 3 (DENND3), is phosphorylated and activated upon starvation. However, how the GEF activity of DENND3 toward Rab12 is regulated at the molecular level is still not understood. Here, we combine size-exclusion chromatography, Förster resonance energy transfer, pulldown, and in vitro GEF assays to demonstrate that regulation of GEF activity is achieved through an intramolecular interaction that is controlled by a key residue in DENND3, tyrosine 940. Our study sheds light on the regulation of Rab12 activation and lays the groundwork for characterizing the regulation of other DENN domain-containing proteins.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Membrana Celular/metabolismo , Cromatografia , Transferência Ressonante de Energia de Fluorescência , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Mutação , Fosforilação , Ligação Proteica , Domínios Proteicos , Tirosina/química
11.
Mol Cell ; 37(3): 370-82, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159556

RESUMO

The DENN domain is an evolutionarily ancient protein module. Mutations in the DENN domain cause developmental defects in plants and human diseases, yet the function of this common module is unknown. We now demonstrate that the connecdenn/DENND1A DENN domain functions as a guanine nucleotide exchange factor (GEF) for Rab35 to regulate endosomal membrane trafficking. Loss of Rab35 activity causes an enlargement of early endosomes and inhibits MHC class I recycling. Moreover, it prevents early endosomal recruitment of EHD1, a common component of tubules involved in endosomal cargo recycling. Our data reveal an enzymatic activity for a DENN domain and demonstrate that distinct Rab GTPases can recruit a common protein machinery to various sites within the endosomal network to establish cargo-selective recycling pathways.


Assuntos
Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Ratos , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo
12.
J Biol Chem ; 291(19): 9929-37, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27044746

RESUMO

The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression.


Assuntos
Membrana Celular/metabolismo , Proliferação de Células , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Biológico Ativo , Membrana Celular/genética , Membrana Celular/patologia , Humanos , Proteínas de Neoplasias/genética , Neoplasias , Proteínas rab de Ligação ao GTP/genética
13.
J Biol Chem ; 291(20): 10726-35, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26969162

RESUMO

Rab GTPases are critical regulators of membrane trafficking. The canonical view is that Rabs are soluble in their inactive GDP-bound form, and only upon activation and conversion to their GTP-bound state are they anchored to membranes through membrane insertion of a C-terminal prenyl group. Here we demonstrate that C-terminal prenylation is not required for Rab13 to associate with and traffic on vesicles. Instead, inactive Rab13 appears to associate with vesicles via protein-protein interactions. Only following activation does Rab13 associate with the plasma membrane, presumably with insertion of the C-terminal prenyl group into the membrane.


Assuntos
Proteínas rab de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Estruturas da Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Endossomos/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Prenilação de Proteína , Transporte Proteico , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
14.
Hum Mol Genet ; 24(3): 727-39, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260547

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 170 SACS mutations have been reported worldwide and are thought to cause loss of function of sacsin, a poorly characterized and massive 520 kDa protein. To establish an animal model and to examine the pathophysiological basis of ARSACS, we generated Sacs knockout (Sacs(-/-)) mice. Null animals displayed an abnormal gait with progressive motor, cerebellar and peripheral nerve dysfunctions highly reminiscent of ARSACS. These clinical features were accompanied by an early onset, progressive loss of cerebellar Purkinje cells followed by spinal motor neuron loss and peripheral neuropathy. Importantly, loss of sacsin function resulted in abnormal accumulation of non-phosphorylated neurofilament (NF) bundles in the somatodendritic regions of vulnerable neuronal populations, a phenotype also observed in an ARSACS brain. Moreover, motor neurons cultured from Sacs(-/-) embryos exhibited a similar NF rearrangement with significant reduction in mitochondrial motility and elongated mitochondria. The data points to alterations in the NF cytoskeleton and defects in mitochondrial dynamics as the underlying pathophysiological basis of ARSACS.


Assuntos
Proteínas de Choque Térmico/genética , Mitocôndrias/patologia , Neurônios Motores/patologia , Espasticidade Muscular/fisiopatologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/congênito , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico/metabolismo , Humanos , Filamentos Intermediários/patologia , Camundongos , Camundongos Knockout , Neurônios Motores/citologia , Espasticidade Muscular/genética , Células de Purkinje/metabolismo , Tratos Piramidais/patologia , Coluna Vertebral/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Técnicas de Cultura de Tecidos
15.
J Cell Sci ; 128(12): 2229-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25964652

RESUMO

Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that is important for the kinetics of both exocytosis and endocytosis, and is thus a candidate molecule to link these two processes. Although the tandem Ca(2+)-binding C2 domains of Syt1 have important roles in exocytosis and endocytosis, the function of the conserved juxtamembrane (jxm) linker region has yet to be determined. We now demonstrate that the jxm region of Syt1 interacts directly with the pleckstrin homology (PH) domain of the endocytic protein dynamin 1. By using cell-attached capacitance recordings with millisecond time resolution to monitor clathrin-mediated endocytosis of single vesicles in neuroendocrine chromaffin cells, we find that loss of this interaction prolongs the lifetime of the fission pore leading to defects in the dynamics of vesicle fission. These results indicate a previously undescribed interaction between two major regulatory proteins in the secretory vesicle cycle and that this interaction regulates endocytosis.


Assuntos
Encéfalo/metabolismo , Células Cromafins/metabolismo , Dinamina I/metabolismo , Vesículas Sinápticas/fisiologia , Sinaptotagmina I/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Encéfalo/citologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins/citologia , Clatrina/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Feminino , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Ratos , Homologia de Sequência de Aminoácidos , Sinapses/fisiologia
16.
EMBO Rep ; 16(6): 709-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925668

RESUMO

Unc-51-like kinases (ULKs) are the most upstream kinases in the initiation of autophagy, yet the molecular mechanisms underlying their function are poorly understood. We report a new role for ULK in the induction of autophagy. ULK-mediated phosphorylation of the guanine nucleotide exchange factor DENND3 at serines 554 and 572 upregulates its GEF activity toward the small GTPase Rab12. Through binding to LC3 and associating with LC3-positive autophagosomes, active Rab12 facilitates autophagosome trafficking, thus establishing a crucial role for the ULK/DENND3/Rab12 axis in starvation-induced autophagy.


Assuntos
Autofagia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fagossomos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , RNA Interferente Pequeno , Proteínas rab de Ligação ao GTP/genética
17.
EMBO Rep ; 16(1): 79-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25427558

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of dominant-inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin-light chains (CLCs). Using genome-edited HA-LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co-localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.


Assuntos
Cadeias Leves de Clatrina/metabolismo , Endossomos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Encéfalo/citologia , Encéfalo/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cadeias Leves de Clatrina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Olho/metabolismo , Olho/patologia , Técnicas de Silenciamento de Genes , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Dados de Sequência Molecular , Neurônios/metabolismo , Neurônios/patologia , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Ratos , Proteínas rac1 de Ligação ao GTP/genética
18.
Mol Cell ; 36(6): 1034-47, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-20064468

RESUMO

Mutations in the parkin gene are responsible for a common inherited form of Parkinson's disease (PD). Parkin is a RING-type E3 ubiquitin ligase with an N-terminal ubiquitin-like domain (Ubl). We report here that the parkin Ubl binds SH3 domains from endocytic BAR proteins such as endophilin-A with an affinity comparable to proline-rich domains (PRDs) from well-established SH3 partners. The NMR structure of the Ubl-SH3 complex identifies the PaRK extension, a unique C-terminal motif in the parkin Ubl required for SH3 binding and for parkin-mediated ubiquitination of endophilin-A in vitro. In nerve terminals, conditions that promote phosphorylation enhance the interaction between parkin and endophilin-A and increase the levels of ubiquitinated proteins within PRD-associated synaptic protein complexes in wild-type but not parkin knockout brain. The findings identify a pathway for the recruitment of synaptic substrates to parkin with the potential to explain the defects in synaptic transmission observed in recessive forms of PD.


Assuntos
Aciltransferases/metabolismo , Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Domínios de Homologia de src , Aciltransferases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Ligação Proteica , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transmissão Sináptica/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
19.
Cell Mol Life Sci ; 73(8): 1529-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26721251

RESUMO

Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology.


Assuntos
Esclerose Lateral Amiotrófica/genética , Corpos Multivesiculares/metabolismo , Doença de Parkinson/genética , Transporte Proteico/fisiologia , Paraplegia Espástica Hereditária/genética , Autofagia/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Endocitose/genética , Endocitose/fisiologia , Humanos , Lisossomos/metabolismo , Transporte Proteico/genética
20.
J Biol Chem ; 290(29): 17999-18008, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26055712

RESUMO

Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas 14-3-3/metabolismo , Células 3T3-L1 , Animais , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/química , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Insulina/metabolismo , Camundongos , Fosforilação , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA