Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Med Phys ; 39(6): 3361-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755717

RESUMO

PURPOSE: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1-2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). METHODS: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. RESULTS: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%-68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%-84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. CONCLUSIONS: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients.


Assuntos
Imageamento Tridimensional/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias/patologia , Neoplasias/radioterapia , Dosagem Radioterapêutica , Carga Tumoral
2.
Med Phys ; 39(11): 7160-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23127107

RESUMO

PURPOSE: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. METHODS: An aperture-based metric ("edge penalty") was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. RESULTS: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. CONCLUSIONS: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Encefálicas/radioterapia , Humanos , Neoplasias Hepáticas/radioterapia , Controle de Qualidade , Radiometria , Planejamento da Radioterapia Assistida por Computador/normas , Erros de Configuração em Radioterapia/prevenção & controle
3.
Phys Med Biol ; 66(22)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34587597

RESUMO

Objective.Modern radiotherapy stands to benefit from the ability to efficiently adapt plans during treatment in response to setup and geometric variations such as those caused by internal organ deformation or tumor shrinkage. A promising strategy is to develop a framework, which given an initial state defined by patient-attributes, can predict future states based on pre-learned patterns from a well-defined patient population.Approach.Here, we investigate the feasibility of predicting patient anatomical changes, defined as a joint state of volume and daily setup changes, across a fractionated treatment schedule using two approaches. The first is based on a new joint framework employing quantum mechanics in combination with deep recurrent neural networks, denoted QRNN. The second approach is developed based on a classical framework, which models patient changes as a Markov process, denoted MRNN. We evaluated the performance characteristics of these two approaches on a dataset of 125 head and neck cancer patients, which was supplemented by synthetic data generated using a generative adversarial network. Model performance was evaluated using area under the receiver operating characteristic curve (AUC) scores.Main results.The MRNN framework had slightly better performance than the QRNN framework, with MRNN (QRNN) validation AUC scores of 0.742±0.021 (0.675±0.036), 0.709±0.026 (0.656±0.021), 0.724±0.036 (0.652±0.044), and 0.698±0.016 (0.605±0.035) for system state vector sizes of 4, 6, 8, and 10, respectively. Of these, only the results from the two higher order states had statistically significant differences(p<0.05).A similar trend was also observed when the models were applied to an external testing dataset of 20 patients, yielding MRNN (QRNN) AUC scores of 0.707 (0.623), 0.687 (0.608), 0.723 (0.669), and 0.697 (0.609) for states vectors sizes of 4, 6, 8, and 10, respectively.Significance.These results suggest that both stochastic models have potential value in predicting patient changes during the course of adaptive radiotherapy.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Redes Neurais de Computação , Curva ROC
4.
Med Phys ; 47(1): 5-18, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31574176

RESUMO

PURPOSE: Modern inverse radiotherapy treatment planning requires nonconvex, large-scale optimizations that must be solved within a clinically feasible timeframe. We have developed and tested a quantum-inspired, stochastic algorithm for intensity-modulated radiotherapy (IMRT): quantum tunnel annealing (QTA). By modeling the likelihood probability of accepting a higher energy solution after a particle tunneling through a potential energy barrier, QTA features an additional degree of freedom (the barrier width, w) not shared by traditional stochastic optimization methods such as Simulated Annealing (SA). This additional degree of freedom can improve convergence rates and achieve a more efficient and, potentially, effective treatment planning process. METHODS: To analyze the character of the proposed QTA algorithm, we chose two stereotactic body radiation therapy (SBRT) liver cases of variable complexity. The "easy" first case was used to confirm functionality, while the second case, with a more challenging geometry, was used to characterize and evaluate the QTA algorithm performance. Plan quality was assessed using dose-volume histogram-based objectives and dose distributions. Due to the stochastic nature of the solution search space, extensive tests were also conducted to determine the optimal smoothing technique, ensuring balance between plan deliverability and the resulting plan quality. QTA convergence rates were investigated in relation to the chosen barrier width function, and QTA and SA performances were compared regarding sensitivity to the choice of solution initializations, annealing schedules, and complexity of the dose-volume constraints. Finally, we investigated the extension from beamlet intensity optimization to direct aperture optimization (DAO). Influence matrices were calculated using the Eclipse scripting application program interface (API), and the optimizations were run on the University of Michigan's high-performance computing cluster, Flux. RESULTS: Our results indicate that QTA's barrier-width function can be tuned to achieve faster convergence rates. The QTA algorithm reached convergence up to 46.6% faster than SA for beamlet intensity optimization and up to 26.8% faster for DAO. QTA and SA were ultimately found to be equally insensitive to the initialization process, but the convergence rate of QTA was found to be more sensitive to the complexity of the dose-volume constraints. The optimal smoothing technique was found to be a combination of a Laplace-of-Gaussian (LOG) edge-finding filter implemented as a penalty within the objective function and a two-dimensional Savitzky-Golay filter applied to the final iteration; this achieved total monitor units more than 20% smaller than plans optimized by commercial treatment planning software. CONCLUSIONS: We have characterized the performance of a stochastic, quantum-inspired optimization algorithm, QTA, for radiotherapy treatment planning. This proof of concept study suggests that QTA can be tuned to achieve faster convergence than SA; therefore, QTA may be a good candidate for future knowledge-based or adaptive radiation therapy applications.


Assuntos
Algoritmos , Teoria Quântica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X
5.
Int J Radiat Oncol Biol Phys ; 72(2): 610-6, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18793965

RESUMO

PURPOSE: Although previous work demonstrated superior dose distributions for left-sided breast cancer patients planned for intensity-modulated radiation therapy (IMRT) at deep inspiration breath hold compared with conventional techniques with free-breathing, such techniques are not always feasible to limit the impact of respiration on treatment delivery. This study assessed whether optimization based on multiple instance geometry approximation (MIGA) could derive an IMRT plan that is less sensitive to known respiratory motions. METHODS AND MATERIALS: CT scans were acquired with an active breathing control device at multiple breath-hold states. Three inverse optimized plans were generated for eight left-sided breast cancer patients: one static IMRT plan optimized at end exhale, two (MIGA) plans based on a MIGA representation of normal breathing, and a MIGA representation of deep breathing, respectively. Breast and nodal targets were prescribed 52.2 Gy, and a simultaneous tumor bed boost was prescribed 60 Gy. RESULTS: With normal breathing, doses to the targets, heart, and left anterior descending (LAD) artery were equivalent whether optimizing with MIGA or on a static data set. When simulating motion due to deep breathing, optimization with MIGA appears to yield superior tumor-bed coverage, decreased LAD mean dose, and maximum heart and LAD dose compared with optimization on a static representation. CONCLUSIONS: For left-sided breast-cancer patients, inverse-based optimization accounting for motion due to normal breathing may be similar to optimization on a static data set. However, some patients may benefit from accounting for deep breathing with MIGA with improvements in tumor-bed coverage and dose to critical structures.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Respiração , Aorta Torácica , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Coração/efeitos da radiação , Humanos , Movimento , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/normas , Tomografia Computadorizada por Raios X/métodos , Carga Tumoral
6.
Med Phys ; 35(4): 1532-46, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18491548

RESUMO

Inverse-planned intensity modulated radiation therapy (IMRT) is often able to achieve complex treatment planning goals that are unattainable with forward three-dimensional (3D) conformal planning. However, the common use of IMRT has introduced several new challenges. The potentially high degree of modulation in IMRT beams risks the loss of some advantages of 3D planning, such as excellent target coverage and high delivery efficiency. Previous attempts to reduce beam complexity by smoothing often result in plan degradation because the smoothing algorithm cannot distinguish between areas of desirable and undesirable modulation. The purpose of this work is to introduce and evaluate adaptive diffusion smoothing (ADS), a novel procedure designed to preferentially reduce IMRT beam complexity. In this method, a discrete diffusion equation is used to smooth IMRT beams using diffusion coefficients, automatically defined for each beamlet, that dictate the degree of smoothing allowed for each beamlet. This yields a method that can distinguish between areas of desirable and undesirable modulation. The ADS method has been incorporated into our optimization system as a weighted cost function penalty, with two diffusion coefficient definitions designed to promote: (1) uniform smoothing everywhere or (2) smoothing based on cost function gradients with respect to the plan beamlet intensities. The ADS method (with both coefficient types) has been tested in a phantom and in two clinical examples (prostate and head/neck). Both types of diffusion coefficients produce plans with reduced modulation and minimal dosimetric impact, but the cost function gradient-based coefficients show more potential for reducing beam modulation without affecting dosimetric plan quality. In summary, adaptive diffusion smoothing is a promising tool for ensuring that only the necessary amount of beam modulation is used, promoting more efficient and accurate IMRT planning, QA, and delivery.


Assuntos
Algoritmos , Análise Numérica Assistida por Computador , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Difusão , Dosagem Radioterapêutica
8.
Med Phys ; 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29862533

RESUMO

PURPOSE: Individualization of therapeutic outcomes in NSCLC radiotherapy is likely to be compromised by the lack of proper balance of biophysical factors affecting both tumor local control (LC) and side effects such as radiation pneumonitis (RP), which are likely to be intertwined. Here, we compare the performance of separate and joint outcomes predictions for response-adapted personalized treatment planning. METHODS: A total of 118 NSCLC patients treated on prospective protocols with 32 cases of local progression and 20 cases of RP grade 2 or higher (RP2) were studied. Sixty-eight patients with 297 features before and during radiotherapy were used for discovery and 50 patients were reserved for independent testing. A multiobjective Bayesian network (MO-BN) approach was developed to identify important features for joint LC/RP2 prediction using extended Markov blankets as inputs to develop a BN predictive structure. Cross-validation (CV) was used to guide the MO-BN structure learning. Area under the free-response receiver operating characteristic (AU-FROC) curve was used to evaluate joint prediction performance. RESULTS: Important features including single nucleotide polymorphisms (SNPs), micro RNAs, pretreatment cytokines, pretreatment PET radiomics together with lung and tumor gEUDs were selected and their biophysical inter-relationships with radiation outcomes (LC and RP2) were identified in a pretreatment MO-BN. The joint LC/RP2 prediction yielded an AU-FROC of 0.80 (95% CI: 0.70-0.86) upon internal CV. This improved to 0.85 (0.75-0.91) with additional two SNPs, changes in one cytokine and two radiomics PET image features through the course of radiotherapy in a during-treatment MO-BN. This MO-BN model outperformed combined single-objective Bayesian networks (SO-BNs) during-treatment [0.78 (0.67-0.84)]. AU-FROC values in the evaluation of the MO-BN and individual SO-BNs on the testing dataset were 0.77 and 0.68 for pretreatment, and 0.79 and 0.71 for during-treatment, respectively. CONCLUSIONS: MO-BNs can reveal possible biophysical cross-talks between competing radiotherapy clinical endpoints. The prediction is improved by providing additional during-treatment information. The developed MO-BNs can be an important component of decision support systems for personalized response-adapted radiotherapy.

9.
Med Phys ; 34(1): 233-45, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17278509

RESUMO

The purpose of this study was to investigate the number of intermediate states required to adequately approximate the clinically relevant cumulative dose to deforming/moving thoracic anatomy in four-dimensional (4D) conformal radiotherapy that uses 6 MV photons to target tumors. Four patients were involved in this study. For the first three patients, computed tomography images acquired at exhale and inhale were available; they were registered using B-spline deformation model and the computed transformation was further used to simulate intermediate states between exhale and inhale. For the fourth patient, 4D-acquired, phase-sorted datasets were available and each dataset was registered with the exhale dataset. The exhale-inhale transformation was also used to simulate intermediate states in order to compare the cumulative doses computed using the actual and the simulated datasets. Doses to each state were calculated using the Dose Planning Method (DPM) Monte Carlo code and dose was accumulated for scoring on the exhale anatomy via the transformation matrices for each state and time weighting factors. Cumulative doses were estimated using increasing numbers of intermediate states and compared to simpler scenarios such as a "2-state" model which used only the exhale and inhale datasets or the dose received during the average phase of the breathing cycle. Dose distributions for each modeled state as well as the cumulative doses were assessed using dose volume histograms and several treatment evaluation metrics such as mean lung dose, normal tissue complication probability, and generalized uniform dose. Although significant "point dose" differences can exist between each breathing state, the differences decrease when cumulative doses are considered, and can become less significant yet in terms of evaluation metrics depending upon the clinical end point. This study suggests that for certain "clinical" end points of importance for lung cancer, satisfactory predictions of accumulated total dose to be received by the distorting anatomy can be achieved by calculating the dose to but a few (or even simply the average) phases of the breathing cycle.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Carga Corporal (Radioterapia) , Bases de Dados Factuais , Humanos , Armazenamento e Recuperação da Informação/métodos , Movimento , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Eficiência Biológica Relativa , Técnica de Subtração
10.
Phys Med Biol ; 52(7): 1845-61, 2007 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-17374915

RESUMO

Optimization problems in IMRT inverse planning are inherently multicriterial since they involve multiple planning goals for targets and their neighbouring critical tissue structures. Clinical decisions are generally required, based on tradeoffs among these goals. Since the tradeoffs cannot be quantitatively determined prior to optimization, the decision-making process is usually indirect and iterative, requiring many repetitive optimizations. This situation becomes even more challenging for cases with a large number of planning goals. To address this challenge, a multicriteria optimization strategy called lexicographic ordering (LO) has been implemented and evaluated for IMRT planning. The LO approach is a hierarchical method in which the planning goals are categorized into different priority levels and a sequence of sub-optimization problems is solved in order of priority. This prioritization concept is demonstrated using two clinical cases (a simple prostate case and a relatively complex head and neck case). In addition, a unique feature of LO in a decision support role is discussed. We demonstrate that a comprehensive list of planning goals (e.g., approximately 23 for the head and neck case) can be optimized using only a few priority levels. Tradeoffs between different levels have been successfully prohibited using the LO method, making the large size problem representations simpler and more manageable. Optimization time needed for each level was practical, ranging from approximately 26 s to approximately 217 s. Using prioritization, the LO approach mimics the mental process often used by physicians as they make decisions handling the various conflicting planning goals. This method produces encouraging results for difficult IMRT planning cases in a highly intuitive manner.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Interpretação Estatística de Dados , Técnicas de Apoio para a Decisão , Relação Dose-Resposta à Radiação , Humanos , Modelos Estatísticos , Modelos Teóricos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador , Fatores de Tempo
11.
Radiother Oncol ; 123(1): 85-92, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28237401

RESUMO

BACKGROUND: In non-small-cell lung cancer radiotherapy, radiation pneumonitis≥grade 2 (RP2) depends on patients' dosimetric, clinical, biological and genomic characteristics. METHODS: We developed a Bayesian network (BN) approach to explore its potential for interpreting biophysical signaling pathways influencing RP2 from a heterogeneous dataset including single nucleotide polymorphisms, micro RNAs, cytokines, clinical data, and radiation treatment plans before and during the course of radiotherapy. Model building utilized 79 patients (21 with RP2) with complete data, and model testing used 50 additional patients with incomplete data. A developed large-scale Markov blanket approach selected relevant predictors. Resampling by k-fold cross-validation determined the optimal BN structure. Area under the receiver-operating characteristics curve (AUC) measured performance. RESULTS: Pre- and during-treatment BNs identified biophysical signaling pathways from the patients' relevant variables to RP2 risk. Internal cross-validation for the pre-BN yielded an AUC=0.82 which improved to 0.87 by incorporating during treatment changes. In the testing dataset, the pre- and during AUCs were 0.78 and 0.82, respectively. CONCLUSIONS: Our developed BN approach successfully handled a high number of heterogeneous variables in a small dataset, demonstrating potential for unraveling relevant biophysical features that could enhance prediction of RP2, although the current observations would require further independent validation.


Assuntos
Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/etiologia , Área Sob a Curva , Biofísica , Humanos
12.
Int J Radiat Oncol Biol Phys ; 97(2): 296-302, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986344

RESUMO

PURPOSE: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. METHODS AND MATERIALS: As part of an institutional review board-approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. RESULTS: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). CONCLUSIONS: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of breast cancer patients for whom attenuation-corrected SPECT/CT scans could be registered directly to RT treatment fields for precise dose estimates.


Assuntos
Pulmão/fisiopatologia , Pulmão/efeitos da radiação , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama/radioterapia , Adulto , Idoso , Antineoplásicos/uso terapêutico , Intervalos de Confiança , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Linfonodos/patologia , Mastectomia/estatística & dados numéricos , Mastectomia Segmentar/estatística & dados numéricos , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Prospectivos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias Unilaterais da Mama/diagnóstico por imagem
13.
Int J Radiat Oncol Biol Phys ; 65(4): 1249-59, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16798417

RESUMO

PURPOSE: To investigate methods of reporting and analyzing statistical uncertainties in doses to targets and normal tissues in Monte Carlo (MC)-based treatment planning. METHODS AND MATERIALS: Methods for quantifying statistical uncertainties in dose, such as uncertainty specification to specific dose points, or to volume-based regions, were analyzed in MC-based treatment planning for 5 lung cancer patients. The effect of statistical uncertainties on target and normal tissue dose indices was evaluated. The concept of uncertainty volume histograms for targets and organs at risk was examined, along with its utility, in conjunction with dose volume histograms, in assessing the acceptability of the statistical precision in dose distributions. The uncertainty evaluation tools were extended to four-dimensional planning for application on multiple instances of the patient geometry. All calculations were performed using the Dose Planning Method MC code. RESULTS: For targets, generalized equivalent uniform doses and mean target doses converged at 150 million simulated histories, corresponding to relative uncertainties of less than 2% in the mean target doses. For the normal lung tissue (a volume-effect organ), mean lung dose and normal tissue complication probability converged at 150 million histories despite the large range in the relative organ uncertainty volume histograms. For "serial" normal tissues such as the spinal cord, large fluctuations exist in point dose relative uncertainties. CONCLUSIONS: The tools presented here provide useful means for evaluating statistical precision in MC-based dose distributions. Tradeoffs between uncertainties in doses to targets, volume-effect organs, and "serial" normal tissues must be considered carefully in determining acceptable levels of statistical precision in MC-computed dose distributions.


Assuntos
Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Incerteza , Esôfago/diagnóstico por imagem , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Medula Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X
14.
Adv Radiat Oncol ; 1(4): 281-289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28740898

RESUMO

PURPOSE: Limits on mean lung dose (MLD) allow for individualization of radiation doses at safe levels for patients with lung tumors. However, MLD does not account for individual differences in the extent or spatial distribution of pulmonary dysfunction among patients, which leads to toxicity variability at the same MLD. We investigated dose rearrangement to minimize the radiation dose to the functional lung as assessed by perfusion single photon emission computed tomography (SPECT) and maximize the target coverage to maintain conventional normal tissue limits. METHODS AND MATERIALS: Retrospective plans were optimized for 15 patients with locally advanced non-small cell lung cancer who were enrolled in a prospective imaging trial. A staged, priority-based optimization system was used. The baseline priorities were to meet physical MLD and other dose constraints for organs at risk, and to maximize the target generalized equivalent uniform dose (gEUD). To determine the benefit of dose rearrangement with perfusion SPECT, plans were reoptimized to minimize the generalized equivalent uniform functional dose (gEUfD) to the lung as the subsequent priority. RESULTS: When only physical MLD is minimized, lung gEUfD was 12.6 ± 4.9 Gy (6.3-21.7 Gy). When the dose is rearranged to minimize gEUfD directly in the optimization objective function, 10 of 15 cases showed a decrease in lung gEUfD of >20% (lung gEUfD mean 9.9 ± 4.3 Gy, range 2.1-16.2 Gy) while maintaining equivalent planning target volume coverage. Although all dose-limiting constraints remained unviolated, the dose rearrangement resulted in slight gEUD increases to the cord (5.4 ± 3.9 Gy), esophagus (3.0 ± 3.7 Gy), and heart (2.3 ± 2.6 Gy). CONCLUSIONS: Priority-driven optimization in conjunction with perfusion SPECT permits image guided spatial dose redistribution within the lung and allows for a reduced dose to the functional lung without compromising target coverage or exceeding conventional limits for organs at risk.

15.
Adv Radiat Oncol ; 1(4): 260-271, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28740896

RESUMO

Although large volumes of information are entered into our electronic health care records, radiation oncology information systems and treatment planning systems on a daily basis, the goal of extracting and using this big data has been slow to emerge. Development of strategies to meet this goal is aided by examining issues with a data farming instead of a data mining conceptualization. Using this model, a vision of key data elements, clinical process changes, technology issues and solutions, and role for professional societies is presented. With a better view of technology, process and standardization factors, definition and prioritization of efforts can be more effectively directed.

16.
Int J Radiat Oncol Biol Phys ; 63(2): 610-4, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16095848

RESUMO

PURPOSE: A mechanism has been developed to evaluate the influence of random setup variations on dose during treatment planning. The information available for studying these factors shifts from population-based models toward patient-specific data as treatment progresses and setup measurements for an individual patient become available. This study evaluates the influence of population as well as patient-specific setup distributions on treatment plans for focal liver tumors. METHODS AND MATERIALS: Eight patients with focal liver tumors were treated on a protocol that involved online setup measurement and adjustment, as well as ventilatory immobilization. Summary statistics from these three-dimensional conformal treatments yielded individual and population distributions of position at initial setup for each fraction. A convolution model for evaluation of the influence of random setup variation on calculated dose distributions has been previously described and investigated for application to focal liver radiotherapy by our department. Individual patient doses based on initial setup positions were calculated by convolving the calculated dose distribution with an anisotropic probability distribution function representing the individual patient's random variations. A separate convolution using population-averaged random variations was performed. Individual beam apertures were then adjusted to provide plans that ensured proper dose to the clinical target volume following convolution with population distributions, as well as individual patient position uncertainty models. RESULTS: Individual patient setup distributions for the course of treatment had random setup variations (sigma) that ranged from 2.5 to 5.7 mm (left-right), 2.1 to 8.3 mm (anterior-posterior), and 4.1 to 10.8 mm (cranial-caudal). The population random components were 4.2 mm (left-right), 4.1 mm (anterior-posterior), and 7.0 mm (cranial-caudal) at initial setup. The initial static planned dose distribution overestimated the volume of liver irradiated to high doses, because inclusion of setup uncertainties generally blurred the resulting doses, shifting the higher-dose region of normal liver dose-volume histograms to lower doses. Furthermore, the population-based dose convolution tended to predict a higher risk of radiation damage to the liver (based on an in-house parameterization of the Lyman normal tissue complication probability model) than the individual patient calculations. For an individual plan, application of different individual random variations yielded change in effective volume differences with a 3% range. Plan adjustment to account for random setup variations generally resulted in a lower change in effective volume than initial planning using a planning target volume followed by calculation of delivered dose based on random offsets. CONCLUSION: This study hints at the factors that most strongly influence planning of liver treatments taking into account geometric variations. Given a setup verification methodology that rapidly reduces systematic offsets, the importance of realistic incorporation of geometric variations as an initial step in treatment planning, as well as possible plan refinement, is demonstrated.


Assuntos
Neoplasias Hepáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Humanos , Fígado/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia Conformacional , Incerteza
17.
Med Phys ; 32(8): 2487-95, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16193778

RESUMO

In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the "tracked" locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the "volume" associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field size, volume expansion, tissue heterogeneity, and direction of tumor displacement with respect to the beam, and are more likely to have an impact on serial organs (such as esophagus), rather than on large parallel organs (such as lung).


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Modelos Biológicos , Movimento , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Elasticidade , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Especificidade de Órgãos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
18.
Phys Med Biol ; 50(5): 801-15, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15798256

RESUMO

In this study, we show that beam model differences play an important role in the comparison of does calculated with various algorithms for lung cancer treatment planning. These differences may impact the accurate correlation of dose with clinical outcome. To accomplish this, we modified the beam model penumbral parameters in an equivalent path length (EPL) algorithm and subsequently compared the EPL doses with those generated with Monte Carlo (MC). A single AP beam was used for beam fitting. Two different beam models were generated for EPL calculations: (1) initial beam model (init_fit) and (2) optimized beam model (best_fit) , with parameters optimized to produce the best agreement with MC calculated profiles at several depths in a water phantom. For the 6 MV, AP beam, EPL(init_fit) calculations were on average within 2%/2 mm (1.4 mm max.) agreement with MC; the agreement for EPL(best_fit) was 2%/1.0 mm (1.3 mm max.) for EPL(best_fit). Treatment planning was performed using a realistic lung phantom using 6 and 15 MV photons. In all homogeneous phantom plans, EPL(best_fit) calculations were in better agreement with MC. In the heterogeneous 6 MV plan, differences between EPL(best_fit and init_fit) and MC were significant for the tumour. The EPL(init_fit), unlike the EPL(best_fit) calculation, showed large differences in the lung relative to MC. For the 15 MV heterogeneous plan, clinically important differences were found between EPL(best_fit or init_fit) and MC for tumour and lung, suggesting that the algorithmic difference in inhomogeneous cases, differences between EPL(best_fit) and MC for lung tissues were smaller compared to those between EPL(init_fit) and MC. Although the extent to which beam model differences impact the dose comparisons will be dependent upon beam parameters (orientation, field size and energy), and the size and location of the tumour, this study shows that failing to correctly account for beam model differences will lead to biased comparisons between dose algorithms. This may ultimately hinder our ability to accurately correlate dose with clinical outcome.


Assuntos
Neoplasias Pulmonares/radioterapia , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Algoritmos , Relação Dose-Resposta à Radiação , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Radiometria , Dosagem Radioterapêutica , Software
19.
J Appl Clin Med Phys ; 6(4): 65-76, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16421501

RESUMO

Despite the well-known benefits of positron emission tomography (PET) imaging in lung cancer diagnosis and staging, the poor spatial resolution of PET has limited its use in radiotherapy planning. Methods used for segmenting tumor from normal tissue, such as threshold boundaries using a fraction of the standardized uptake value (SUV), are subject to uncertainties. The issue of respiratory motion in the thorax confounds the problem of accurate target definition. In this work, we evaluate how changing the PET-defined target volume by varying the threshold value in the segmentation process impacts target and normal lung tissue doses. For each of eight lung cancer patients we retrospectively generated multiple PET-target volumes; each target volume corresponds to those voxels with intensities above a given threshold level, defined by a percentage of the maximum voxel intensity. PET-defined targets were compared to those from CT; CT targets comprise a composite volume generated from breath-hold inhale and exhale datasets; the CT dataset therefore also includes the extents of tumor motion. Treatment plans using Monte Carlo dose calculation were generated for all targets; the dose uniformity was approximately 100+/-5% within the internal target volume (ITV) (formed by a uniform 8-mm expansion of the composite gross target volume (GTV)). In all cases differences were observed in the generalized equivalent uniform doses (gEUDs) to the targets and in the mean lung doses (MLDs) and normal tissue complication probabilities (NTCPs) to the normal lung tissues. The magnitudes of the dose differences were found to depend on the target volume, location, and amount of irradiated normal lung tissue, and in many instances were clinically meaningful (greater than a single 2 Gy fraction). For those patients studied, results indicate that accurate dosimetry using PET volumes is highly dependent on accurate target segmentation. Further study with correlation to clinical outcome will be helpful in determining how to apply these various PET and CT volumes in treatment planning, to potentially improve local tumor control and reduce normal tissue toxicities.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Radiografia , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Int J Radiat Oncol Biol Phys ; 56(4): 1023-37, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12829138

RESUMO

PURPOSE: To develop an intensity modulated radiotherapy (IMRT) technique for postmastectomy RT that improves target coverage while sparing all appropriate normal tissues. MATERIALS AND METHODS: IMRT plans were generated using an in-house optimization system. Priority was given to matching the heart doses achieved with partially wide tangent fields (PWTFs) while maintaining 50 Gy +/- 5% to the chest wall, internal mammary nodes, and supraclavicular nodes. Other normal tissue doses were then minimized. Metrics for plan comparisons included minimal, maximal, and mean doses and normal tissue complication probability. RESULTS: IMRT resulted in more uniform chest wall coverage than did PWTFs. The average chest wall minimal dose was 43.7 +/- 1.1 Gy for IMRT and 31.2 +/- 16.5 Gy for PWTFs (p = 0.04). The average internal mammary node minimal dose was 42.8 +/- 2.1 Gy for IMRT and 21.8 +/- 13.2 Gy for PWTFs (p = 0.001). IMRT matched the <1% heart normal tissue complication probability achieved using PWTFs. The average contralateral breast mean dose was 2.8 +/- 1.7 Gy for IMRT, but a greater breast volume was exposed compared with PWTFs. The mean ipsilateral lung normal tissue complication probability was lower for IMRT (0.0) than for PWTFs (0.07 +/- 0.07; p = 0.02). The mean contralateral lung dose was greater for IMRT (5.8 +/- 1.8 Gy) than for PWTFs (1.6 +/- 0.1 Gy; p = <0.0001). CONCLUSION: A new IMRT technique achieves full target coverage while maintaining similar doses to heart and ipsilateral lung as conventional techniques. However, contralateral lung and breast volumes exposed to low doses were increased with IMRT and will need to be reduced in future studies.


Assuntos
Neoplasias da Mama/radioterapia , Radioterapia Conformacional/métodos , Neoplasias da Mama/cirurgia , Feminino , Humanos , Linfonodos/patologia , Linfonodos/efeitos da radiação , Mastectomia Radical Modificada , Estadiamento de Neoplasias , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Adjuvante , Parede Torácica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA