Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0250365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861801

RESUMO

A Bayesian Belief Network, validated using past observational data, is applied to conceptualize the ecological response of Lake Maninjau, a tropical lake ecosystem in Indonesia, to tilapia cage farms operating on the lake and to quantify its impacts to assist decision making. The model captures ecosystem services trade-offs between cage farming and native fish loss. It is used to appraise options for lake management related to the minimization of the impacts of the cage farms. The constructed model overcomes difficulties with limited data availability to illustrate the complex physical and biogeochemical interactions contributing to triggering mass fish kills due to upwelling and the loss in the production of native fish related to the operation of cage farming. The model highlights existing information gaps in the research related to the management of the farms in the study area, which is applicable to other tropical lakes in general. Model results suggest that internal phosphorous loading (IPL) should be recognized as one of the primary targets of the deep eutrophic tropical lake restoration efforts. Theoretical and practical contributions of the model and model expansions are discussed. Short- and longer-term actions to contribute to a more sustainable management are recommended and include epilimnion aeration and sediment capping.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Eutrofização , Pesqueiros/organização & administração , Lagos , Tilápia/crescimento & desenvolvimento , Animais , Indonésia , Fósforo/metabolismo
2.
Ambio ; 45(1): 52-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26392185

RESUMO

The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.


Assuntos
Monitoramento Ambiental/métodos , Poluição da Água/análise , Ecologia/métodos , Europa (Continente) , Recreação , Ciências Sociais/métodos , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA