Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Health Serv Res ; 24(1): 253, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38414045

RESUMO

BACKGROUND: Germline cancer genetic testing has become a standard evidence-based practice, with established risk reduction and screening guidelines for genetic carriers. Access to genetic services is limited in many places, which leaves many genetic carriers unidentified and at risk for late diagnosis of cancers and poor outcomes. This poses a problem for childhood cancer survivors, as this is a population with an increased risk for subsequent malignant neoplasms (SMN) due to cancer therapy or inherited cancer predisposition. The ENGaging and Activating cancer survivors in Genetic services (ENGAGE) study evaluates the effectiveness of an in-home, collaborative PCP model of remote telegenetic services to increase uptake of cancer genetic testing in childhood cancer survivors compared to usual care options for genetic testing. METHODS: The ENGAGE study is a 3-arm randomized hybrid type 1 effectiveness and implementation study within the Childhood Cancer Survivor Study population which tests a clinical intervention while gathering information on its delivery during the effectiveness trial and its potential for future implementation among 360 participants. Participants are randomized into three arms. Those randomized to Arm A receive genetic services via videoconferencing, those in Arm B receive these services by phone, and those randomized to Arm C will receive usual care services. DISCUSSION: With many barriers to accessing genetic services, innovative delivery models are needed to address this gap and increase uptake of genetic services. The ENGAGE study evaluates the effectiveness of an adapted model of remote delivery of genetic services to increase the uptake of recommended genetic testing in childhood cancer survivors. This study assesses the uptake in remote genetic services and identify barriers to uptake to inform future recommendations and a theoretically-informed process evaluation which can inform modifications to enhance dissemination beyond this study population and to realize the benefits of precision medicine. TRIAL REGISTRATION: This protocol was registered at clinicaltrials.gov (NCT04455698) on July 2, 2020.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Criança , Neoplasias/genética , Testes Genéticos
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372132

RESUMO

The apicomplexan parasite Cryptosporidium infects the intestinal epithelium. While infection is widespread around the world, children in resource-poor settings suffer a disproportionate disease burden. Cryptosporidiosis is a leading cause of diarrheal disease, responsible for mortality and stunted growth in children. CD4 T cells are required to resolve this infection, but powerful innate mechanisms control the parasite prior to the onset of adaptive immunity. Here, we use the natural mouse pathogen Cryptosporidium tyzzeri to demonstrate that the inflammasome plays a critical role in initiating this early response. Mice lacking core inflammasome components, including caspase-1 and apoptosis-associated speck-like protein, show increased parasite burden and caspase 1 deletion solely in enterocytes phenocopies whole-body knockout (KO). This response was fully functional in germfree mice and sufficient to control Cryptosporidium infection. Inflammasome activation leads to the release of IL-18, and mice that lack IL-18 are more susceptible to infection. Treatment of infected caspase 1 KO mice with recombinant IL-18 is remarkably efficient in rescuing parasite control. Notably, NOD-like receptor family pyrin domain containing 6 (NLRP6) was the only NLR required for innate parasite control. Taken together, these data support a model of innate recognition of Cryptosporidium infection through an NLRP6-dependent and enterocyte-intrinsic inflammasome that leads to the release of IL-18 required for parasite control.


Assuntos
Criptosporidiose/imunologia , Enterócitos/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Caspase 1/metabolismo , Cryptosporidium/fisiologia , Enterócitos/imunologia , Interações Hospedeiro-Patógeno , Camundongos
3.
Mucosal Immunol ; 17(3): 387-401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508522

RESUMO

Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the major histocompatibility complex-I restricted SIINFEKL epitope which is recognized by T cell receptor transgenic OT-I(OVA-TCR-I) clusters of differentiation (CD)8+ T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8+ T cells that were a source of interferon-gamma (IFN-γ) that could restrict growth of Cryptosporidium. This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (rhoptry protein 1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells, type 1 conventional dendritic cells were required to generate CD8+ T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as potential targets of the immune system and suggest that crosstalk between enterocytes and type 1 conventional dendritic cells is crucial for CD8+ T cell responses to Cryptosporidium.


Assuntos
Linfócitos T CD8-Positivos , Criptosporidiose , Cryptosporidium , Células Dendríticas , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Animais , Criptosporidiose/imunologia , Camundongos , Cryptosporidium/imunologia , Interferon gama/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Humanos , Camundongos Transgênicos , Ativação Linfocitária/imunologia , Epitopos de Linfócito T/imunologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Camundongos Knockout
4.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645924

RESUMO

Cryptosporidium causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, Cryptosporidium was engineered to express a parasite effector protein (MEDLE-2) that contains the MHC-I restricted SIINFEKL epitope which is recognized by TCR transgenic OT-I CD8 + T cells. These modified parasites induced expansion of endogenous SIINFEKL-specific and OT-I CD8 + T cells that were a source of IFN-γ that could restrict growth of Cryptosporidium . This T cell response was dependent on the translocation of the effector and similar results were observed with another secreted parasite effector (ROP1). Although infection and these translocated effector proteins are restricted to intestinal epithelial cells (IEC), type I dendritic cells (cDC1) were required to generate CD8 + T cell responses to these model antigens. These data sets highlight Cryptosporidium effectors as targets of the immune system and suggest that crosstalk between enterocytes and cDC1s is crucial for CD8 + T cell responses to Cryptosporidium .

5.
Sci Transl Med ; 12(563)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998973

RESUMO

Cryptosporidium is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series. Members of this series blocked growth in in vitro culture of three Cryptosporidium parvum isolates with EC50 's in 1% serum of <0.4 to 96 nM, had comparable potencies against Cryptosporidium hominis and C. parvum, and was effective in three of four highly susceptible immunosuppressed mice with once-daily dosing administered for 4 days beginning 2 weeks after infection. Comprehensive genetic, biochemical, and chemical studies demonstrated inhibition of C. parvum phenylalanyl-tRNA synthetase (CpPheRS) as the mode of action of this new lead series. Introduction of mutations directly into the C. parvum pheRS gene by CRISPR-Cas9 genome editing resulted in parasites showing high degrees of compound resistance. In vitro, bicyclic azetidines potently inhibited the aminoacylation activity of recombinant ChPheRS. Medicinal chemistry optimization led to the identification of an optimal pharmacokinetic/pharmacodynamic profile for this series. Collectively, these data demonstrate that bicyclic azetidines are a promising series for anticryptosporidial drug development and establish a broad framework to enable target-based drug discovery for this infectious disease.


Assuntos
Azetidinas , Criptosporidiose , Cryptosporidium , Parasitos , Fenilalanina-tRNA Ligase , Animais , Azetidinas/farmacologia , Criptosporidiose/tratamento farmacológico , Diarreia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA