Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Biol ; 20(1)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541516

RESUMO

Velocity correlation is an important feature for animal groups performing collective motions. Previous studies have mostly focused on the velocity correlation in a single ecological context. It is unclear whether correlation characteristics vary in a single species in different contexts. Here, we studied the velocity correlations in jackdaw flocks in two different contexts: transit flocks where birds travel from one location to another, and mobbing flocks where birds respond to an external stimulus. We found that in both contexts, although the interaction rules are different, the velocity correlations remain scale-free, i.e. the correlation length (the distance over which the velocity of two individuals is similar) increases linearly with the group size. Furthermore, we found that the correlation length is independent of the group density for transit flocks, but increases with increasing group density in mobbing flocks. This result confirms a previous observation that birds obey topological interactions in transit flocks, but switch to metric interactions in mobbing flocks. Finally, in both contexts, the impact of group polarization on correlation length is not significant. Our results suggest that wild animals are always able to respond coherently to perturbations regardless of context.


Assuntos
Comportamento Animal , Corvos , Animais , Voo Animal , Modelos Biológicos , Aves
2.
Proc Biol Sci ; 286(1906): 20190865, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266425

RESUMO

As one of nature's most striking examples of collective behaviour, bird flocks have attracted extensive research. However, we still lack an understanding of the attractive and repulsive forces that govern interactions between individuals within flocks and how these forces influence neighbours' relative positions and ultimately determine the shape of flocks. We address these issues by analysing the three-dimensional movements of wild jackdaws ( Corvus monedula) in flocks containing 2-338 individuals. We quantify the social interaction forces in large, airborne flocks and find that these forces are highly anisotropic. The long-range attraction in the direction perpendicular to the movement direction is stronger than that along it, and the short-range repulsion is generated mainly by turning rather than changing speed. We explain this phenomenon by considering wingbeat frequency and the change in kinetic and gravitational potential energy during flight, and find that changing the direction of movement is less energetically costly than adjusting speed for birds. Furthermore, our data show that collision avoidance by turning can alter local neighbour distributions and ultimately change the group shape. Our results illustrate the macroscopic consequences of anisotropic interaction forces in bird flocks, and help to draw links between group structure, local interactions and the biophysics of animal locomotion.


Assuntos
Corvos/fisiologia , Voo Animal/fisiologia , Comportamento Social , Animais , Comportamento Animal , Fenômenos Biomecânicos , Reino Unido
3.
Nat Ecol Evol ; 3(6): 943-948, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061474

RESUMO

Current understanding of collective behaviour in nature is based largely on models that assume that identical agents obey the same interaction rules, but in reality interactions may be influenced by social relationships among group members. Here, we show that social relationships transform local interactions and collective dynamics. We tracked individuals' three-dimensional trajectories within flocks of jackdaws, a species that forms lifelong pair-bonds. Reflecting this social system, we find that flocks contain internal sub-structure, with discrete pairs of individuals tied together by spring-like effective forces. Within flocks, paired birds interacted with fewer neighbours than unpaired birds and flapped their wings more slowly, which may result in energy savings. However, flocks with more paired birds had shorter correlation lengths, which is likely to inhibit efficient information transfer through the flock. Similar changes to group properties emerge naturally from a generic self-propelled particle model. These results reveal a critical tension between individual- and group-level benefits during collective behaviour in species with differentiated social relationships, and have major evolutionary and cognitive implications.


Assuntos
Aves , Animais , Análise Custo-Benefício
4.
Nat Commun ; 10(1): 5174, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729384

RESUMO

Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group-level properties. Jackdaws interact with a fixed number of neighbours (topological interactions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self-propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems.


Assuntos
Corvos/fisiologia , Animais , Comportamento Animal , Simulação por Computador , Modelos Biológicos , Comportamento Social , Comportamento Espacial
5.
J R Soc Interface ; 16(159): 20190450, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31640502

RESUMO

The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. Three-dimensional imaging techniques now allow us to characterize the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, probably because of constraints on individual flight capability. Turn rates increased with the angle of the turn so that the time to complete turns remained constant. We also find that context may alter where turns are initiated in the flocks: for transit flocks in the absence of predators, initiators were located throughout the flocks, but for mobbing flocks with a fixed ground-based predator, they were always located at the front. Moreover, in some transit flocks, initiators were far apart from each other, potentially because of the existence of subgroups and variation in individual interaction ranges. Finally, we find that as the group size increased the information transfer speed initially increased, but rapidly saturated to a constant value. Our results highlight previously unrecognized complexity in turning kinematics and information transfer in social animals.


Assuntos
Corvos/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Comportamento Social , Animais
6.
J R Soc Interface ; 15(147)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355809

RESUMO

Tracking the movements of birds in three dimensions is integral to a wide range of problems in animal ecology, behaviour and cognition. Multi-camera stereo-imaging has been used to track the three-dimensional (3D) motion of birds in dense flocks, but precise localization of birds remains a challenge due to imaging resolution in the depth direction and optical occlusion. This paper introduces a portable stereo-imaging system with improved accuracy and a simple stereo-matching algorithm that can resolve optical occlusion. This system allows us to decouple body and wing motion, and thus measure not only velocities and accelerations but also wingbeat frequencies along the 3D trajectories of birds. We demonstrate these new methods by analysing six flocking events consisting of 50 to 360 jackdaws (Corvus monedula) and rooks (Corvus frugilegus) as well as 32 jackdaws and 6 rooks flying in isolated pairs or alone. Our method allows us to (i) measure flight speed and wingbeat frequency in different flying modes; (ii) characterize the U-shaped flight performance curve of birds in the wild, showing that wingbeat frequency reaches its minimum at moderate flight speeds; (iii) examine group effects on individual flight performance, showing that birds have a higher wingbeat frequency when flying in a group than when flying alone and when flying in dense regions than when flying in sparse regions; and (iv) provide a potential avenue for automated discrimination of bird species. We argue that the experimental method developed in this paper opens new opportunities for understanding flight kinematics and collective behaviour in natural environments.


Assuntos
Corvos/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA