RESUMO
Currently, there are no biomarkers to predict lethal lung injury by radiation. Since it is not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy. End points such as SPECT imaging of the lung using molecular probes, measurement of circulating blood cells and specific miRNA have been shown to change after radiation. Our goal was to use these changes to predict lethal lung injury in the rat model, 2 weeks post-irradiation, before any symptoms manifest and after which a countermeasure can be given to enhance survival. SPECT imaging with 99mTc-MAA identified a decrease in perfusion in the lung after irradiation. A decrease in circulating white blood cells and an increase in five specific miRNAs in whole blood were also tested. Univariate analyses were then conducted on the combined dataset. The results indicated that a combination of percent change in lymphocytes and monocytes, as well as pulmonary perfusion volume could predict survival from radiation to the lungs with 88.5% accuracy (95% confidence intervals of 77.8, 95.3) with a p-value of < 0.0001 versus no information rate. This study is one of the first to report a set of minimally invasive endpoints to predict lethal radiation injury in female rats. Lung-specific injury can be visualized by 99mTc-MAA as early as 2 weeks after radiation.
Assuntos
Lesão Pulmonar , MicroRNAs , Lesões Experimentais por Radiação , Lesões por Radiação , Humanos , Feminino , Ratos , Animais , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , MicroRNAs/genética , Biomarcadores , Lesões Experimentais por Radiação/diagnóstico por imagemRESUMO
BACKGROUND: Urinary extracellular vesicles (EVs) are a source of biomarkers with broad potential applications across clinical research, including monitoring radiation exposure. A key limitation to their implementation is minimal standardization in EV isolation and analytical methods. Further, most urinary EV isolation protocols necessitate large volumes of sample. This study aimed to compare and optimize isolation and analytical methods for EVs from small volumes of urine. METHODS: 3 EV isolation methods were compared: ultracentrifugation, magnetic bead-based, and size-exclusion chromatography from 0.5 mL or 1 mL of rat and human urine. EV yield and mass spectrometry signals (Q-ToF and Triple Quad) were evaluated from each method. Metabolomic profiling was performed on EVs isolated from the urine of rats exposed to ionizing radiation 1-, 14-, 30- or 90-days post-exposure, and human urine from patients receiving thoracic radiotherapy for the treatment of lung cancer pre- and post-treatment. RESULTS: Size-exclusion chromatography is the preferred method for EV isolation from 0.5 mL of urine. Mass spectrometry-based metabolomic analyses of EV cargo identified biochemical changes induced by radiation, including altered nucleotide, folate, and lipid metabolism. We have provided standard operating procedures for implementation of these methods in other laboratories. CONCLUSIONS: We demonstrate that EVs can be isolated from small volumes of urine and analytically investigated for their biochemical contents to detect radiation induced metabolomic changes. These findings lay a groundwork for future development of methods to monitor response to radiotherapy and can be extended to an array of molecular phenotyping studies aimed at characterizing EV cargo.
Assuntos
Vesículas Extracelulares , Exposição à Radiação , Animais , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Espectrometria de Massas , Ratos , UltracentrifugaçãoRESUMO
To develop a dynamic in vivo near-infrared (NIR) fluorescence imaging assay to quantify sequential changes in lung vascular permeability-surface area product (PS) in rodents. Dynamic NIR imaging methods for determining lung vascular permeability-surface area product were developed and tested on non-irradiated and 13 Gy irradiated rats with/without treatment with lisinopril, a radiation mitigator. A physiologically-based pharmacokinetic (PBPK) model of indocyanine green (ICG) pulmonary disposition was applied to in vivo imaging data and PS was estimated. In vivo results were validated by five accepted assays: ex vivo perfused lung imaging, endothelial filtration coefficient (Kf) measurement, pulmonary vascular resistance measurement, Evan's blue dye uptake, and histopathology. A PBPK model-derived measure of lung vascular permeability-surface area product increased from 2.60 ± 0.40 [CL: 2.42-2.78] mL/min in the non-irradiated group to 6.94 ± 8.25 [CL: 3.56-10.31] mL/min in 13 Gy group after 42 days. Lisinopril treatment lowered PS in the 13 Gy group to 4.76 ± 6.17 [CL: 2.12-7.40] mL/min. A much higher up to 5× change in PS values was observed in rats exhibiting severe radiation injury. Ex vivo Kf (mL/min/cm H2O/g dry lung weight), a measure of pulmonary vascular permeability, showed similar trends in lungs of irradiated rats (0.164 ± 0.081 [CL: 0.11-0.22]) as compared to non-irradiated controls (0.022 ± 0.003 [CL: 0.019-0.025]), with reduction to 0.070 ± 0.035 [CL: 0.045-0.096] for irradiated rats treated with lisinopril. Similar trends were observed for ex vivo pulmonary vascular resistance, Evan's blue uptake, and histopathology. Our results suggest that whole body dynamic NIR fluorescence imaging can replace current assays, which are all terminal. The imaging accurately tracks changes in PS and changes in lung interstitial transport in vivo in response to radiation injury.
Assuntos
Lesão Pulmonar Aguda , Permeabilidade Capilar/efeitos da radiação , Pulmão , Imagem Óptica , Lesões Experimentais por Radiação , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Feminino , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacologia , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/fisiopatologia , RatosRESUMO
Ventilation with gases containing enhanced fractions of oxygen is the cornerstone of therapy for patients with hypoxia and acute respiratory distress syndrome. Yet, hyperoxia treatment increases free reactive oxygen species (ROS)-induced lung injury, which is reported to disrupt autophagy/mitophagy. Altered extranuclear activity of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), plays a protective role in ROS injury and autophagy in the systemic and coronary endothelium. We investigated interactions between autophagy/mitophagy and TERT that contribute to mitochondrial dysfunction and pulmonary injury in cultured rat lung microvascular endothelial cells (RLMVECs) exposed in vitro, and rat lungs exposed in vivo to hyperoxia for 48 h. Hyperoxia-induced mitochondrial damage in rat lungs [TOMM20, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], which was paralleled by increased markers of inflammation [myeloperoxidase (MPO), IL-1ß, TLR9], impaired autophagy signaling (Beclin-1, LC3B-II/1, and p62), and decreased the expression of TERT. Mitochondrial-specific autophagy (mitophagy) was not altered, as hyperoxia increased expression of Pink1 but not Parkin. Hyperoxia-induced mitochondrial damage (TOMM20) was more pronounced in rats that lack the catalytic subunit of TERT and resulted in a reduction in cellular proliferation rather than cell death in RLMVECs. Activation of TERT or autophagy individually offset mitochondrial damage (MTT). Combined activation/inhibition failed to alleviate hyperoxic-induced mitochondrial damage in vitro, whereas activation of autophagy in vivo decreased mitochondrial damage (MTT) in both wild type (WT) and rats lacking TERT. Functionally, activation of either TERT or autophagy preserved transendothelial membrane resistance. Altogether, these observations show that activation of autophagy/mitophagy and/or TERT mitigate loss of mitochondrial function and barrier integrity in hyperoxia.NEW & NOTEWORTHY In cultured pulmonary artery endothelial cells and in lungs exposed in vivo to hyperoxia, autophagy is activated, but clearance of autophagosomes is impaired in a manner that suggests cross talk between TERT and autophagy. Stimulation of autophagy prevents hyperoxia-induced decreases in mitochondrial metabolism and sustains monolayer resistance. Hyperoxia increases mitochondrial outer membrane (TOMM20) protein, decreases mitochondrial function, and reduces cellular proliferation without increasing cell death.
Assuntos
Células Endoteliais/enzimologia , Hiperóxia/complicações , Lesão Pulmonar/enzimologia , Pulmão/irrigação sanguínea , Microvasos/enzimologia , Mitocôndrias/enzimologia , Mitofagia , Telomerase/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Permeabilidade Capilar , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Técnicas de Inativação de Genes , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Microvasos/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Superfície Celular/metabolismo , Telomerase/deficiência , Telomerase/genética , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismoRESUMO
The goal of this study is to understand and mitigate the effects of wounds on acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), for preparedness against a radiological attack or accident. Combined injuries from concomitant trauma and radiation are likely in these scenarios. Either exacerbation or mitigation of radiation damage by wound trauma has been previously reported in preclinical studies. Female WAG/RijCmcr rats received 13 Gy X-rays, with partial-body shielding of one leg. Within 2 h, irradiated rats and non-irradiated controls were given full-thickness skin wounds with or without lisinopril, started orally 7 days after irradiation. Morbidity, skin wound area, breathing interval and blood urea nitrogen were measured up to 160 days post-irradiation to independently evaluate wound trauma and DEARE. Wounding exacerbated morbidity in irradiated rats between 5 and 14 days post-irradiation (during the ARS phase), and irradiation delayed wound healing. Wounding did not alter delayed morbidities from radiation pneumonitis or nephropathy after 30 days post-irradiation. Lisinopril did not mitigate wound healing, but markedly decreased morbidity during DEARE from 31 through 160 days. The results derived from this unique model of combined injuries suggest different molecular mechanisms of injury and healing of ARS and DEARE after radiation exposure.
Assuntos
Síndrome Aguda da Radiação/complicações , Lisinopril/farmacologia , Lesões Experimentais por Radiação , Pneumonite por Radiação/complicações , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/complicações , Animais , Nitrogênio da Ureia Sanguínea , Feminino , Estimativa de Kaplan-Meier , Lesões por Radiação , Proteção Radiológica , Ratos , Irradiação Corporal Total , Raios XRESUMO
Radiation therapy is used in ~50% of cancer patients to reduce the risk of recurrence and in some cases improve survival. Despite these benefits, doses can be limited by toxicity in multiple organs, including the heart. The underlying causes and biomarkers of radiation-induced cardiotoxicity are currently unknown, prompting the need for experimental models with inherent differences in sensitivity and resistance to the development of radiation-induced cardiotoxicity. We have identified the parental SS (Dahl salt-sensitive/Mcwi) rat strain to be a highly-sensitized model of radiation-induced cardiotoxicity. In comparison, substitution of rat chromosome 3 from the resistant BN (Brown Norway) rat strain onto the SS background (SS-3BN consomic) significantly attenuated radiation-induced cardiotoxicity. SS-3BN rats had less radiation-induced cardiotoxicity than SS rats, as measured by survival, pleural and pericardial effusions, echocardiogram parameters, and histological damage. Mast cells, previously shown to have predominantly protective roles in radiation-induced cardiotoxicity, were increased in the more resistant SS-3BN hearts postradiation. RNA sequencing from SS and SS-3BN hearts at 1 wk postradiation revealed 5,098 differentially expressed candidate genes across the transcriptome and 350 differentially expressed genes on rat chromosome 3, which coincided with enrichment of multiple pathways, including mitochondrial dysfunction, sirtuin signaling, and ubiquitination. Upstream regulators of enriched pathways included the oxidative stress modulating transcription factor, Nrf2, which is located on rat chromosome 3. Nrf2 target genes were also differentially expressed in the SS vs. SS-3BN consomic hearts postradiation. Collectively, these data confirm the existence of heritable modifiers in radiation-induced cardiotoxicity and provide multiple biomarkers, pathways, and candidate genes for future analyses. NEW & NOTEWORTHY This novel study reveals that heritable genetic factors have the potential to modify normal tissue sensitivity to radiation. Gene variant(s) on rat chromosome 3 can contribute to enhanced cardiotoxicity displayed in the SS rats vs. the BN and SS-3BN consomic rats. Identifying genes that lead to understanding the mechanisms of radiation-induced cardiotoxicity represents a novel method to personalize radiation treatment, as well as predict the development of radiation-induced cardiotoxicity.
Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos , Genes Modificadores , Variação Genética , Cardiopatias/genética , Lesões por Radiação/genética , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Transdução de SinaisRESUMO
OBJECTIVE: We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. APPROACH AND RESULTS: Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. CONCLUSIONS: Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction.
Assuntos
Células Endoteliais/efeitos dos fármacos , Hiperóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxigênio/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Dinaminas/genética , Dinaminas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Hiperóxia/genética , Hiperóxia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/ultraestrutura , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para CimaRESUMO
Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. MATERIALS AND METHODS: Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. RESULTS: Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. CONCLUSION: Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury.
Assuntos
Pneumonia em Organização Criptogênica/prevenção & controle , Lesão Pulmonar/metabolismo , Receptor A2B de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Adenosina/farmacologia , Animais , Isquemia , RNA Mensageiro/análise , Ratos , Receptor A2A de Adenosina/análise , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/análise , Receptor A2B de Adenosina/genéticaRESUMO
PURPOSE: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS: We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS: Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.
Assuntos
Proteínas de Membrana , Lesões por Radiação , Lesões do Sistema Vascular , Ratos , Feminino , Animais , Células Endoteliais/metabolismo , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
The capacity to follow cell type-specific signaling in intact lung remains limited. 20-hydroxyeicosatetraenoic acid (20-HETE) is an endogenous fatty acid that mediates signaling for a number of key physiologic endpoints in the pulmonary vasculature, including cell survival and altered vascular tone. We used confocal microscopy to identify enhanced reactive oxygen species (ROS) production in endothelial cell (EC)s in intact lung evoked by two stable analogs of 20-HETE, 20-5,14-HEDE (20-hydroxyeicosa-5(Z),14(Z)-dienoic acid) and 20-5,14-HEDGE (N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine). These analogs generated increased ROS in cultured pulmonary artery endothelial cells as well. 20-HETE analog treatment decreased apoptosis of pulmonary tissue exposed to hypoxia-reoxygenation (HR) ex vivo. Enhanced ROS production and apoptosis were confirmed by biochemical assays. Our studies identify physiologically critical, graded ROS from ECs in live lung tissue ex vivo treated with 20-HETE analogs and protection from HR-induced apoptosis. These methodologies create exciting possibilities for studying signaling by stable 20-HETE analogs and other factors in pulmonary endothelial and other lung cell types in their native milieu.
Assuntos
Células Endoteliais/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Lipopeptídeos/farmacologia , Pulmão/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Hipóxia/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Microscopia Confocal , Oxigênio/farmacologia , Cultura Primária de Células , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de TecidosRESUMO
PURPOSE: To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE. METHODS: WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kg-1 d-1) for mitigation of lung and kidney DEARE when started 15 d after PBI. Rats were fed known amounts of IPW-5371 using a syringe, instead of delivery by daily oral gavage, sparing exacerbation of esophageal injury by radiation. The primary endpoint, all-cause morbidity was assessed over 215 d. Secondary endpoints: body weight, breathing rate and blood urea nitrogen were also assessed. RESULTS: IPW-5371 enhanced survival (primary endpoint) as well as attenuated secondary endpoints of lung and kidney injuries by radiation. CONCLUSION: To provide a window for dosimetry and triage, as well as avoid oral delivery during the acute radiation syndrome (ARS), the drug regimen was started at 15 d after 13.5 Gy PBI. The experimental design to test mitigation of DEARE was customized for translation in humans, using an animal model of radiation that was designed to simulate a radiologic attack or accident. The results support advanced development of IPW-5371 to mitigate lethal lung and kidney injuries after irradiation of multiple organs.
Assuntos
Síndrome Aguda da Radiação , Lesões Experimentais por Radiação , Humanos , Ratos , Feminino , Animais , Lesões Experimentais por Radiação/prevenção & controle , Medula Óssea/efeitos da radiação , Doses de Radiação , Pulmão/efeitos da radiaçãoRESUMO
PURPOSE: The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations. MATERIALS AND METHODS: Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling. Sub-cohorts of rats were treated with three variants of recombinant APC namely, rat wildtype (WT) APC, rat 3K3A mutant form of APC, and human WT APC as two bolus injections at 24 and 48 hours post IR. RESULTS: Radiation induced robust changes in the urinary profiles leading to oxidative stress, severe dyslipidemia, and altered biosynthesis of PUFAs, glycerophospholipids, sphingolipids, and steroids. Alterations were observed in multiple metabolic pathways related to energy metabolism, nucleotide biosynthesis and metabolism that were indicative of disrupted mitochondrial function and DNA damage. On the other hand, sub-cohorts of rats that were treated with rat wildtype-APC showed alleviation of radiation toxicities, in part, at the 90-day time point, while rat 3K3A-APC showed partial alleviation of radiation induced metabolic alterations 14 days after irradiation. CONCLUSIONS: Taken together, these results show that augmenting the Protein C pathway and activity via administration of recombinant APC may be an effective approach for mitigation of radiation induced normal tissue toxicity.
Assuntos
Proteína C , Lesões por Radiação , Ratos , Animais , Feminino , Humanos , Proteína C/farmacologia , Metaboloma , MetabolômicaRESUMO
Concern regarding accidental overexposure to radiation has been raised after the devastating Tohuku earthquake and tsunami which initiated the Fukushima Daiichi nuclear disaster in Japan in March 2011. Radiation exposure is toxic and can be fatal depending on the dose received. Injury to the lung is often reported as part of multi-organ failure in victims of accidental exposures. Doses of radiation >8 Gray to the chest can induce pneumonitis with right ventricular hypertrophy starting after â¼2 months. Higher doses may be followed by pulmonary fibrosis that presents months to years after exposure. Though the exact mechanisms of radiation lung damage are not known, experimental animal models have been widely used to study this injury. Rodent models for pneumonitis and fibrosis exhibit vascular, parenchymal and pleural injuries to the lung. Inflammation is a part of the injuries suggesting involvement of the immune system. Researchers worldwide have tested a number of interventions to prevent or mitigate radiation lung injury. One of the first and most successful class of mitigators are inhibitors of angiotensin-converting enzyme (ACE), an enzyme that is abundant in the lung. These results offer hope that lung injury from radiation accidents may be mitigated, since the ACE inhibitor captopril was effective when started up to 1 week after irradiation.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pulmão/efeitos da radiação , Fibrose Pulmonar/etiologia , Lesões Experimentais por Radiação/tratamento farmacológico , Pneumonite por Radiação/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Inflamação , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Doses de Radiação , Lesões Experimentais por Radiação/enzimologia , Lesões Experimentais por Radiação/imunologia , Lesões Experimentais por Radiação/patologia , Pneumonite por Radiação/enzimologia , Pneumonite por Radiação/imunologia , Pneumonite por Radiação/patologiaRESUMO
BACKGROUND AND OBJECTIVE: A single dose of 10 Gy radiation to the thorax of rats results in decreased total lung angiotensin-converting enzyme (ACE) activity, pulmonary artery distensibility and distal vascular density while increasing pulmonary vascular resistance (PVR) at 2 months post-exposure. In this study, we evaluate the potential of a renin-angiotensin system (RAS) modulator, the ACE inhibitor captopril, to mitigate this pulmonary vascular damage. METHODS: Rats exposed to 10 Gy thorax only irradiation and age-matched controls were studied 2 months after exposure, during the development of radiation pneumonitis. Rats were treated, either immediately or 2 weeks after radiation exposure, with two doses of the ACE inhibitor, captopril, dissolved in their drinking water. To determine pulmonary vascular responses, we measured pulmonary haemodynamics, lung ACE activity, pulmonary arterial distensibility and peripheral vessel density. RESULTS: Captopril, given at a vasoactive, but not a lower dose, mitigated radiation-induced pulmonary vascular injury. More importantly, these beneficial effects were observed even if drug therapy was delayed for up to 2 weeks after exposure. CONCLUSIONS: Captopril resulted in a reduction in pulmonary vascular injury that supports its use as a radiomitigator after an unexpected radiological event such as a nuclear accident.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Captopril/uso terapêutico , Pulmão/efeitos dos fármacos , Pneumonite por Radiação/tratamento farmacológico , Lesões do Sistema Vascular/tratamento farmacológico , Animais , Feminino , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Pulmão/efeitos da radiação , Doses de Radiação , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/enzimologia , Pneumonite por Radiação/enzimologia , Ratos , Tórax/efeitos dos fármacos , Tórax/efeitos da radiaçãoRESUMO
Angiotensin converting enzyme (ACE) inhibitors are effective countermeasures to chronic radiation injuries in rodent models, and there is evidence for similar effects in humans. In rodent models ACE inhibitors are effective mitigators of radiation injury to kidney, lung, central nervous system (CNS) and skin, even when started weeks after irradiation. In humans, the best data for their efficacy as radiation countermeasures comes from retrospective studies of injuries in radiotherapy patients. We propose that ACE inhibitors, at doses approved for human use for other indications, could be used to reduce the risk of chronic radiation injuries from deep-space exploration. Because of the potential interaction of ACE inhibitors and microgravity (due to effects of ACE inhibitors on fluid balance) use might be restricted to post-exposure when/if radiation exposures reached a danger level. A major unresolved issue for this approach is the sparse evidence for the efficacy of ACE inhibitors after low-dose-rate exposure and/or for high-LET radiations (as would occur on long-duration space flights). A second issue is that the lack of a clear mechanism of action of the ACE inhibitors as mitigators makes obtaining an appropriate label under the Food and Drug Administration Animal Rule difficult.
Assuntos
Lesões por Radiação , Voo Espacial , Animais , Humanos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Captopril/farmacologia , Captopril/uso terapêutico , Peptidil Dipeptidase A/uso terapêutico , Estudos Retrospectivos , Lesões por Radiação/prevenção & controleRESUMO
Though angiogenesis has been investigated in depth, vascular regression and rarefaction remain poorly understood. Regression of renal vasculature accompanies many pathological states such as diabetes, hypertension, atherosclerosis, and radiotherapy. Radiation decreases microvessel density in multiple organs, though the mechanism is not known. By using a whole animal (rat) model with a single dose of partial body irradiation to the kidney, changes in the volume of renal vasculature were recorded at two time points, 60 and 90 days after exposure. Next, a novel vascular and metabolic imaging (VMI) technique was used to computationally assess 3D vessel diameter, volume, branch depth, and density over multiple levels of branching down to 70 µm. Four groups of rats were studied, of which two groups received a single dose of 12.5 Gy X-rays. The kidneys were harvested after 60 or 90 days from one irradiated and one non-irradiated group at each time point. Measurements of the 3D vasculature showed that by day-90 post-radiation, when renal function is known to deteriorate, total vessel volume, vessel density, maximum branch depth, and the number of terminal points in the kidneys decreased by 55%, 57%, 28%, and 53%, respectively. Decreases in the same parameters were not statistically significant at 60 days post-irradiation. Smaller vessels with internal diameters of 70-450 µm as well as large vessels of diameter 451-850 µm, both decreased by 90 days post-radiation. Vascular regression in the lungs of the same strain of irradiated rats has been reported to occur before 60 days supporting the hypothesis that this process is regulated in an organ-specific manner and occurs by a concurrent decrease in luminal diameters of small as well as large blood vessels.
RESUMO
PURPOSE: Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiation therapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS: ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats after either high dose fractionated radiation therapy to the right lung (5 fractions × 9 Gy) or a single dose of 13.5 Gy partial body irradiation. Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat partial body irradiation model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid. In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS: In both the partial body irradiation and fractionated radiation therapy models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (P = .0004). Lisinopril abrogated radiation-induced increases in bronchoalveolar lavage fluid monocyte chemoattractant protein 1 (chemokine ligand 2) and MIP-1a cytokine levels (P < .0001). Treatment with lisinopril reduced both ACE expression (P = .006) and frequency of CD45+ CD11b+ lung myeloid cells (P = .004). In vitro, radiation injury acutely increased ACE activity (P = .045) and reactive oxygen species (ROS) generation (P = .004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Radiation-induced ROS generation was blocked by pharmacologic inhibition of either NADPH oxidase 2 (P = .012) or the type 1 angiotensin receptor (P = .013). CONCLUSIONS: These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of proinflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/type 1 angiotensin receptor pathway in immune cells and promotes generation of ROS via NADPH oxidase 2.
Assuntos
Lesões por Radiação , Pneumonite por Radiação , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Humanos , Lisinopril/farmacologia , Lisinopril/uso terapêutico , Pulmão/efeitos da radiação , Monócitos , NADPH Oxidase 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/uso terapêutico , Lesões por Radiação/patologia , Pneumonite por Radiação/tratamento farmacológico , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/prevenção & controle , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapêuticoRESUMO
The genetic bases and disparate responses to radiotherapy are poorly understood, especially for cardiotoxicity resulting from treatment of thoracic tumors. Preclinical animal models such as the Dahl salt-sensitive (SS) rat can serve as a surrogate model for salt-sensitive low renin hypertension, common to African Americans, where aldosterone contributes to hypertension-related alterations of peripheral vascular and renal vascular function. Brown Norway (BN) rats, in comparison, are a normotensive control group, while consomic SSBN6 with substitution of rat chromosome 6 (homologous to human chromosome 14) on an SS background manifests cardioprotection and mitochondrial preservation to SS rats after injury. In this study, 2 groups from each of the 3 rat strains had their hearts irradiated (8 Gy X 5 fractions). One irradiated group was treated with the ACE-inhibitor lisinopril, and a separate group in each strain served as nonirradiated controls. Radiation reduced cardiac end diastolic volume by 9-11% and increased thickness of the interventricular septum (11-16%) and left ventricular posterior wall (14-15%) in all 3 strains (5-10 rats/group) after 120 days. Lisinopril mitigated the increase in posterior wall thickness. Mitochondrial function was measured by the Seahorse Cell Mitochondrial Stress test in peripheral blood mononuclear cells (PBMC) at 90 days. Radiation did not alter mitochondrial respiration in PBMC from BN or SSBN6. However, maximal mitochondrial respiration and spare capacity were reduced by radiation in PBMC from SS rats (p=0.016 and 0.002 respectively, 9-10 rats/group) and this effect was mitigated by lisinopril (p=0.04 and 0.023 respectively, 9-10 rats/group). Taken together, these results indicate injury to the heart by radiation in all 3 strains of rats, although the SS rats had greater susceptibility for mitochondrial dysfunction. Lisinopril mitigated injury independent of genetic background.
RESUMO
OBJECTIVE: Extracellular inorganic pyrophosphate (ePPi) is a key regulator of pathologic mineralization in articular cartilage. Articular chondrocytes generate ePPi by the transportation of intracellular PPi (iPPi) through transport mechanisms such as ANK or by the degradation of extracellular adenosine triphosphate (eATP) by ectoenzymes. Although numerous modulators of ePPi have been characterized, little is known about eATP elaboration in cartilage. We sought to determine (1) whether eATP is coordinately regulated with ePPi and (2) whether ANK transports ATP. METHODS: Primary articular chondrocytes were treated with factors known to modulate ePPi levels including growth factors (TGFß1 and IGF-1), anion channel inhibitors, and chemicals that alter adenylyl cyclase and protein kinase C activities. Additional chondrocyte monolayers were infected with adenovirus containing functional (Ad-ANK) or mutated (Ad-ANK mutant) ANK sequences. eATP levels were measured with a bioluminescent assay. RESULTS: TGFß1 enhanced eATP accumulation by 33%, whereas IGF-1 decreased eATP accumulation by 63% and attenuated TGFß1-induced eATP release by 72%. Forskolin and probenecid diminished eATP accumulation by 55% and 89%. Phorbol-12-myristate-13-acetate increased eATP by 29%. Transfection of chondrocytes with Ad-ANK caused a 10-fold increase in eATP compared with control values. CONCLUSION: Modulation of eATP by various factors paralleled their effects on ePPi production, suggesting a shared pathway of ePPi and eATP production and implicating ANK in eATP transport. As eATP directly contributes to pathologic mineralization in articular cartilage, understanding eATP regulation may lead to effective therapies for crystal-associated arthritis.
Assuntos
Trifosfato de Adenosina/metabolismo , Calcificação Fisiológica/fisiologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Difosfatos/metabolismo , Espaço Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Adenoviridae , Adenilil Ciclases/metabolismo , Animais , Colforsina , Vetores Genéticos , Humanos , Hidrólise , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Transporte de Fosfato , Probenecid , Proteína Quinase C/metabolismo , Sus scrofa , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.