Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Oncol ; 62(10): 1295-1300, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656773

RESUMO

BACKGROUND: Pelvic insufficiency fractures (PIFs) are a late complication of radiotherapy for pelvic malignancies. We evaluated the incidence, radiologic findings, clinical course, and outcome of PIFs in patients treated with neoadjuvant (chemo)radiotherapy ((C)RT) for rectal cancer. MATERIAL AND METHODS: Data of patients diagnosed with rectal cancer from a large teaching hospital treated from 2002 to 2012 were extracted from the Dutch Cancer Registry. All hospital records were reviewed for the diagnosis of PIFs or pelvic bone metastases. An expert radiologist reassessed all imaging procedures of the lower back, abdomen, and pelvis. RESULTS: A total of 513 rectal cancer patients were identified of whom 300 patients (58.5%) were treated with neoadjuvant (C)RT (long- vs. short-course radiotherapy: 91 patients [17.7%] vs. 209 [40.7%], respectively). Twelve PIFs were diagnosed initially according to hospital records and imaging reports of all 513 patients. These 12 patients were treated with neoadjuvant (C)RT. After reassessment of all pelvic imaging procedures done in this patient group (432 patients (84.2%)), 20 additional PIFs were detected in patients treated with neoadjuvant (C)RT, resulting in a 10.7% PIF rate in irradiated patients. One PIF was detected in the group of patients not treated with neoadjuvant (C)RT for rectal cancer. This patient had palliative radiotherapy for prostate cancer and is left out of the analysis. Median follow-up time of 32 PIF patients was 49 months. Median time between start of neoadjuvant (C)RT and diagnosis of PIF was 17 months (IQR 9-28). Overall median survival for patients with PIF was 63.5 months (IQR 44-120). CONCLUSION: PIFs are a relatively common late complication of neoadjuvant (C)RT for rectal cancer but are often missed or misdiagnosed as pelvic bone metastases. The differentiation of PIFs from pelvic bone metastases is important because of a different treatment and disease outcome.


Assuntos
Fraturas de Estresse , Ossos Pélvicos , Neoplasias Retais , Masculino , Humanos , Fraturas de Estresse/epidemiologia , Fraturas de Estresse/etiologia , Fraturas de Estresse/patologia , Terapia Neoadjuvante/efeitos adversos , Ossos Pélvicos/patologia , Pelve/patologia , Neoplasias Retais/patologia , Quimiorradioterapia/efeitos adversos , Estudos Retrospectivos , Estadiamento de Neoplasias
2.
Nucleic Acids Res ; 45(19): 11056-11069, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977491

RESUMO

Cancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression. This occurs through the induction of p21 (CDKN1A) and the recruitment of the repressive DREAM complex to the A3B gene promoter, such that loss of p53 through mutation, or human papilloma virus-mediated inhibition, prevents recruitment of the complex, thereby causing elevated A3B expression and cytosine deaminase activity in cancer cells. As p53 is frequently mutated in cancer, our findings provide a mechanism by which p53 loss can promote cancer mutagenesis.


Assuntos
Citidina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Menor/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citidina Desaminase/metabolismo , Células HCT116 , Humanos , Immunoblotting , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo
3.
Nucleic Acids Res ; 44(2): 582-94, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26400164

RESUMO

Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.


Assuntos
Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/genética , Proteína Supressora de Tumor p53/genética , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Deleção de Genes , Células HCT116 , Células HT29 , Humanos , Mutação , Especificidade de Órgãos , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
4.
J Chem Ecol ; 43(7): 712-724, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744732

RESUMO

Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.


Assuntos
Herbivoria , Medicago truncatula/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Saponinas/metabolismo , Spodoptera/fisiologia , Animais , Medicago truncatula/química , Metaboloma , Reguladores de Crescimento de Plantas/análise , Saponinas/análise
5.
Biochem J ; 469(3): 325-46, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26205489

RESUMO

p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.


Assuntos
Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
6.
Nucleic Acids Res ; 42(12): 7666-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928858

RESUMO

The p53 tumour suppressor is induced by various stress stimuli and coordinates an adaptive gene expression programme leading to growth arrest or cell death. Some stimuli, such as DNA damage, lead to rapid and substantial multisite phosphorylation of p53, nucleated initially through phosphorylation of serine 15. Other stimuli, such as hyper-proliferation, do not stimulate p53-phosphorylation, raising questions regarding the physiological role for phosphorylation. Here, we show that a basal level of Ser15 phosphorylation occurs in both unstimulated cells and cells stimulated pharmacologically to induce p53. p53 in which Ser15 is substituted by alanine (S15A) fails to mediate p53-dependent transcription or growth arrest but can be rescued by substitution with aspartate (S15D: a phospho-mimic). Chromatin immunoprecipitation (ChIP) analyses show that, while wt- and S15A-p53 are detectable on the CDKN1A (p21) promoter (as a representative p53-responsive promoter), S15A-p53 does not stimulate histone acetylation (a measure of chromatin relaxation), nor is its recruitment stimulated, in response to a DNA damage or pharmacological stimulus. These data demonstrate that Ser15 phosphorylation is required for p53 function in the physiological context of p53-responsive promoters and suggest a key and possibly universal role even for low levels of this modification in promoting p53-transcription function.


Assuntos
Regiões Promotoras Genéticas , Serina/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA , Etoposídeo/farmacologia , Humanos , Imidazóis/farmacologia , Mutação , Fosforilação , Piperazinas/farmacologia , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
7.
EMBO J ; 29(17): 2994-3006, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20657550

RESUMO

p53 mediates DNA damage-induced cell-cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR-S6K1 through p38alpha MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2-mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR-S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53-dependent cell death. These findings thus establish mTOR-S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1-Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging-controlling Mdm2-p53 and mTOR-S6K pathways.


Assuntos
Ciclo Celular , Dano ao DNA , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Estresse Fisiológico , Linhagem Celular , Reparo do DNA , Dimerização , Humanos , Fosforilação , Ligação Proteica , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
JTO Clin Res Rep ; 5(8): 100694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161961

RESUMO

Introduction: Single-station N2 (ssN2) versus multi-station N2 has been used as a selection criterion for treatment recommendations between surgical versus non-surgical multimodality treatment in stage III-N2 NSCLC. We hypothesized that clinical staging would be susceptible to upstaging on pathologic staging and, therefore, challenge this practice. Methods: A retrospective study of prospectively collected routine clinical data for patients with stage III-N2 NSCLC that had completed computed tomography (CT), positron emission tomography (PET), and staging endobronchial ultrasound (EBUS) and had been confirmed clinical stage III-ssN2 at multidisciplinary team discussion and went on to complete surgical resection as the first treatment to provide pathologic staging. The study was completed in two cohorts (A) across a single cancer alliance in England (Greater Manchester) January 1, 2015 to December 31, 2018 and (B) across five United Kingdom centers to validate the findings in part A January 1, 2016 to December 31, 2020. Results: A total of 115 patients met the inclusion criteria across cohort A (56 patients) and cohort B (59 patients) across 15 United Kingdom hospitals. The proportion of cases in which clinical stage III-ssN2 was upstaged to pathologic stage III-multi-station N2 was 34% (19 of 56) in cohort A, 32% in cohort B (19 of 59), and 33% across the combined study cohort (38 of 115). Most patients had a single radiologically abnormal lymph node on CT and PET (88%, 105 of 115). In the majority, the reasons for missed N2 disease on staging EBUS were due to inaccessible (stations 5, 6, 8, 9) N2 nodes at EBUS (34%, 13 of 38) and accessible lymph nodes not sampled during staging EBUS as not meeting sampling threshold (40%, 15 of 38) rather than false-negative sampling during EBUS (26%, 10 of 38). Conclusions: During multidisciplinary team discussions, clinicians must be aware that one-third of patients with stage III-ssN2 on the basis of CT, PET, and staging EBUS do not truly have ssN2 and this questions the use of this criterion to define treatment recommendations.

9.
Am J Hum Genet ; 87(1): 40-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598275

RESUMO

Primary microcephaly is a rare condition in which brain size is substantially diminished without other syndromic abnormalities. Seven autosomal loci have been genetically mapped, and the underlying causal genes have been identified for MCPH1, MCPH3, MCPH5, MCPH6, and MCPH7 but not for MCPH2 or MCPH4. The known genes play roles in mitosis and cell division. We ascertained three families from an Eastern Canadian subpopulation, each with one microcephalic child. Homozygosity analysis in two families using genome-wide dense SNP genotyping supported linkage to the published MCPH4 locus on chromosome 15q21.1. Sequencing of coding exons of candidate genes in the interval identified a nonconservative amino acid change in a highly conserved residue of the centrosomal protein CEP152. The affected children in these two families were both homozygous for this missense variant. The third affected child was compound heterozygous for the missense mutation plus a second, premature-termination mutation truncating a third of the protein and preventing its localization to centrosomes in transfected cells. CEP152 is the putative mammalian ortholog of Drosphila asterless, mutations in which affect mitosis in the fly. Published data from zebrafish are also consistent with a role of CEP152 in centrosome function. By RT-PCR, CEP152 is expressed in the embryonic mouse brain, similar to other MCPH genes. Like some other MCPH genes, CEP152 shows signatures of positive selection in the human lineage. CEP152 is a strong candidate for the causal gene underlying MCPH4 and may be an important gene in the evolution of human brain size.


Assuntos
Proteínas de Ciclo Celular/genética , Microcefalia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem
10.
Breast Cancer Res ; 14(2): R40, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22405092

RESUMO

INTRODUCTION: Polo-like kinase-1 (PLK1) is a crucial driver of cell cycle progression and its down-regulation plays an important checkpoint role in response to DNA damage. Mechanistically, this is mediated by p53 which represses PLK1 expression through chromatin remodelling. Consistent with this model, cultured cells lacking p53 fail to repress PLK1 expression. This study examined PLK1 expression, p53 mutation and clinical outcome in breast cancer. METHODS: Immunohistochemistry was performed using antibodies to PLK1, MDM2 and Ki67 on Tissue Micro-Array (TMA) slides of a cohort of 215 primary breast cancers. The TP53 gene (encoding p53) was sequenced in all tumour samples. Protein expression scored using the "Quickscore" method was compared with clinical and pathological data, including survival. RESULTS: Staining of PLK1 was observed in 11% of primary breast tumours and was significantly associated with the presence of TP53 mutation (P = 0.0063). Moreover, patients with both PLK1 expression and TP53 mutation showed a significantly worse survival than those with either PLK1 expression or TP53 mutation alone. There was also a close association of elevated PLK1 with triple negative tumours, considered to be poor prognosis breast cancers that generally harbour TP53 mutation. Further association was observed between elevated PLK1 levels and the major p53 negative regulator, MDM2. CONCLUSIONS: The significant association between elevated PLK1 and TP53 mutation in women with breast cancer is consistent with escape from repression of PLK1 expression by mutant p53. Tumours expressing elevated PLK1, but lacking functional p53, may be potential targets for novel anti-PLK1-targeted drugs.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica/métodos , Pessoa de Meia-Idade , Mutação , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Taxa de Sobrevida , Quinase 1 Polo-Like
11.
Cancer Cell ; 5(5): 465-75, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15144954

RESUMO

Nucleophosmin (NPM, B23) is an abundant nucleolar phosphoprotein involved in ribosome biogenesis, and interacts with tumor suppressor proteins p53 and Rb. Here we show that NPM is a UV damage response protein that undergoes nucleoplasmic redistribution and regulates p53 and HDM2 levels and their interaction. By utilizing RNAi approaches and analyses of endogenous and ectopically expressed proteins, we demonstrate that NPM binds HDM2 and acts as a negative regulator of p53-HDM2 interaction. Viral stress, enforced by expression of Kaposi's sarcoma virus K cyclin, causes NPM redistribution, K cyclin-NPM association, and p53 stabilization by dissociation of HDM2-p53 complexes. The results demonstrate novel associations of HDM2 and K cyclin with NPM and implicate NPM as a crucial controller of p53 through inhibition of HDM2.


Assuntos
Nucléolo Celular/metabolismo , Ciclinas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Nucléolo Celular/efeitos da radiação , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Glutationa Transferase/metabolismo , Humanos , Camundongos , Nucleofosmina , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Testes de Precipitina , Biossíntese de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-mdm2 , RNA Interferente Pequeno/farmacologia , Proteína SUMO-1/metabolismo , Proteína Supressora de Tumor p53/química , Raios Ultravioleta/efeitos adversos , Dedos de Zinco
12.
Semin Cancer Biol ; 20(1): 19-28, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19897041

RESUMO

The p53 tumour suppressor is a tightly controlled transcription factor that coordinates a broad programme of gene expression in response to various cellular stresses leading to the outcomes of growth arrest, senescence, or apoptosis. MDM2 is an E3 ubiquitin ligase that plays a key role in maintaining p53 at critical physiological levels by targeting it for proteasome-mediated degradation. Expression of the MDM2 gene is p53-dependent and thus p53 and MDM2 operate within a negative feedback loop in which p53 controls the levels of its own regulator. Induction and activation of p53 involves mainly the uncoupling of p53 from its negative regulators, principally MDM2 and MDMX, an MDM2-related and -interacting protein that inhibits p53 transactivation function. MDM2 is tightly regulated through various mechanisms including gene expression, protein turnover (mediated by auto-ubiquitylation), protein-protein interaction with key regulators, and post-translational modification, mainly, but not exclusively, by multisite phosphorylation. The purpose of the present article is to review our current knowledge of the signalling mechanisms that focus on MDM2, and indeed MDMX, through both phosphorylation mechanisms and peptide-docking events and to consider the wider implications of these regulatory events in the context of coordinated regulation of the p53 response. This analysis also provides an opportunity to consider the signalling pathways regulating MDM2 as potential targets for non-genotoxic therapies aimed at restoring p53 function in tumour cells.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ubiquitinação
13.
Mol Cell Biochem ; 356(1-2): 133-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21769452

RESUMO

Protein kinase CK2 has many established in vitro substrates, but it is only within the past few years that we have begun to ascertain which of these are its real physiological targets, how their phosphorylation may contribute towards regulating normal cell physiology, and how phosphorylation of these proteins might influence the development of diseases such as cancer. One of the well-characterised in vitro substrates for CK2 is the tumour suppressor protein, p53. However, the physiological nature of this interaction has never been fully established. In the present article, we summarise a recent study from our laboratory showing that phosphorylation of p53 at Ser392, the sole site modified by CK2 in vitro, is regulated by a novel mechanism where the stoichiometry of phosphorylation is governed by the rate of turnover of the p53 protein. Such a model is entirely consistent with phosphorylation by a constitutively active protein kinase such as CK2. In contrast to this, while there is overwhelming evidence that CK2 phosphorylates p53 in vitro and is the only detectable Ser392 protein kinase in cell extracts, our data raise uncertainty as to whether this interaction truly reflects events underpinning Ser392 phosphorylation in vivo. We consider the possible role of CK2 in regulating the p53 response in a wider context and suggest key issues that should be addressed experimentally to provide a more cohesive picture of the relationship between this important protein kinase and a pivotal anti-cancer surveillance system in cells.


Assuntos
Caseína Quinase II/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Fosforilação , Fosfosserina/metabolismo , Processamento de Proteína Pós-Traducional
14.
Nucleic Acids Res ; 37(9): 2962-73, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19295133

RESUMO

Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular , Quinase 1 do Ponto de Checagem , Fatores de Transcrição de Choque Térmico , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
15.
Methods Mol Biol ; 2267: 7-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786782

RESUMO

The p53 tumor suppressor has a central role in many key cellular processes including the DNA damage response, aging, stem cell differentiation, and fertility. p53 undergoes extensive regulatory post-translational modification through events such as phosphorylation, acetylation, methylation, and ubiquitylation. Here, we describe western blotting-based methodology for the detection and relative quantification of individual phosphorylation events in p53. While we focus on well-established N-terminal modifications for the purpose of illustration, this approach can be used to investigate other post-translational modifications of the protein, drawing upon a broad range of commercially available modification-specific antibodies.


Assuntos
Western Blotting/métodos , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Humanos , Fosforilação
16.
Abdom Radiol (NY) ; 46(1): 249-256, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583138

RESUMO

PURPOSE: Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases. METHODS: In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal-Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models. RESULTS: The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85-87%), 71% (95%CI 69-72%) and 86% (95% CI 85-87%), respectively. CONCLUSION: A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Teorema de Bayes , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Aprendizado de Máquina , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
17.
Cardiovasc Intervent Radiol ; 44(6): 913-920, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33506278

RESUMO

PURPOSE: Predicting early local tumor progression after thermal ablation treatment for colorectal liver metastases patients is critical for the decision of subsequent follow-up and treatment. Radiomics features derived from medical images show great potential for prediction and prognosis. The aim is to develop and validate a machine learning radiomics model to predict local tumor progression based on the pre-ablation CT scan of colorectal liver metastases patients. MATERIALS AND METHODS: Ninety patients with colorectal liver metastases (140 lesions) treated by ablation were included in the study and were randomly divided into a training (n = 63 patients/n = 94 lesions) and validation (n = 27 patients/n = 46 lesions) cohort. After manual lesion volume segmentation and preprocessing, 1593 radiomics features were extracted for each lesion. Three machine learning survival models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features to predict local tumor progression free survival. Feature reduction and machine learning modeling were performed and optimized with sequential model-based optimization. RESULTS: Median follow-up was 24 months (range 6-115). Thirty-one (22%) lesions developed local tumor progression. The concordance index in the validation set to predict local tumor progression free survival was 0.78 (95% confidence interval [CI]: 0.77-0.79) for the radiomics model, 0.56 (95%CI: 0.55-0.57) for the clinical model and 0.79 (95%CI: 0.78-0.80) for the combined model. CONCLUSION: A machine learning-based radiomics analysis of routine clinical CT imaging pre-ablation could act as a valuable biomarker model to predict local tumor progression with curative intent for colorectal liver metastases patients.


Assuntos
Ablação por Cateter , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Colorretais/cirurgia , Progressão da Doença , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento
18.
J Biol Chem ; 284(47): 32384-94, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19759023

RESUMO

The ubiquitin ligase murine double minute clone 2 (MDM2) mediates ubiquitination and degradation of the tumor suppressor p53. The activation and stabilization of p53 by contrast is maintained by enzymes catalyzing p53 phosphorylation and acetylation. Casein kinase 1 (CK1) is one such enzyme; it stimulates p53 after transforming growth factor-beta treatment, irradiation, or DNA virus infection. We analyzed whether CK1 regulates p53 protein stability in unstressed conditions. Depletion of CK1 using small interfering RNA or inhibition of CK1 using the kinase inhibitor (D4476) activated p53 and destabilized E2F-1, indicating that steady-state levels of these proteins are controlled by CK1. Co-immunoprecipitation of endogenous CK1 with MDM2 occurred in undamaged cells, indicating the existence of a stable multiprotein complex, and as such, we evaluated whether the MDM2 Nutlin had similar pharmacological properties to the CK1 inhibitor D4476. Indeed, D4476 or Nutlin treatments resulted in the same p53 and E2F-1 steady-state protein level changes, indicating that the MDM2 x CK1 complex is both a negative regulator of p53 and a positive regulator of E2F-1 in undamaged cells. Although the treatment of cells with D4476 resulted in a partial p53-dependent growth arrest, the induction of p53-independent apoptosis by D4476 suggested a critical role for the MDM2 x CK1 complex in maintaining E2F-1 anti-apoptotic signaling. These data highlighting a pharmacological similarity between MDM2 and CK1 small molecule inhibitors and the fact that CK1 and MDM2 form a stable complex suggest that the MDM2 x CK1 complex is a component of a genetic pathway that co-regulates the stability of the p53 and E2F-1 transcription factors.


Assuntos
Caseína Quinase I/fisiologia , Fator de Transcrição E2F1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Benzamidas/farmacologia , Caseína Quinase I/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Imidazóis/farmacologia , Modelos Biológicos , Fosforilação , Piperazinas/farmacologia , Isoformas de Proteínas , RNA Interferente Pequeno/metabolismo
19.
Ecol Appl ; 19(5): 1102-13, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19688919

RESUMO

A single ecosystem dominates the Midwestern United States, occupying 26 million hectares in five states alone: the corn-soybean agroecosystem [Zea mays L.-Glycine max (L.) Merr.]. Nitrogen (N) fertilization could influence the soil carbon (C) balance in this system because the corn phase is fertilized in 97-100% of farms, at an average rate of 135 kg N x ha(-1) x yr(-1). We evaluated the impacts on two major processes that determine the soil C balance, the rates of organic-carbon (OC) inputs and decay, at four levels of N fertilization, 0, 90, 180, and 270 kg/ha, in two long-term experimental sites in Mollisols in Iowa, USA. We compared the corn-soybean system with other experimental cropping systems fertilized with N in the corn phases only: continuous corn for grain; corn-corn-oats (Avena sativa L.)-alfalfa (Medicago sativa L.; corn-oats-alfalfa-alfalfa; and continuous soybean. In all systems, we estimated long-term OC inputs and decay rates over all phases of the rotations, based on long-term yield data, harvest indices (HI), and root:shoot data. For corn, we measured these two ratios in the four N treatments in a single year in each site; for other crops we used published ratios. Total OC inputs were calculated as aboveground plus belowground net primary production (NPP) minus harvested yield. For corn, measured total OC inputs increased with N fertilization (P < 0.05, both sites). Belowground NPP, comprising only 6-22% of total corn NPP, was not significantly influenced by N fertilization. When all phases of the crop rotations were evaluated over the long term, OC decay rates increased concomitantly with OC input rates in several systems. Increases in decay rates with N fertilization apparently offset gains in carbon inputs to the soil in such a way that soil C sequestration was virtually nil in 78% of the systems studied, despite up to 48 years of N additions. The quantity of belowground OC inputs was the best predictor of long-term soil C storage. This indicates that, in these systems, in comparison with increased N-fertilizer additions, selection of crops with high belowground NPP is a more effective management practice for increasing soil C sequestration.


Assuntos
Carbono/análise , Fertilizantes , Nitrogênio/química , Solo , Agricultura , Carbono/metabolismo , Ecossistema , Meio-Oeste dos Estados Unidos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
20.
Practitioner ; 253(1723): 17-20, 2, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20043505

RESUMO

In OSA, the patient suffers repeated episodes of apnoea caused by narrowing or closure of the pharyngeal airway during sleep. The degree of closure of the airway leads to periods of either apnoea (complete) or hypopnoea (partial) obstruction. Population-based surveys estimate that 2-4% of the middle-aged population have OSA, which is similar to the prevalence of diabetes and asthma. Although understanding of the condition has improved considerably, it is estimated that 85-90% of sufferers still remain undiagnosed. OSA is not only a cause of excessive daytime somnolence leading to an increased risk of accidents on the road and poor work performance, but also a major cause of social dysfunction, reduced quality of life related to poor health, and mood disorders. Untreated OSA predicts a substantially increased risk of hypertension, cardiovascular disease, cerebrovascular disease, depression, and mortality. Wherever OSA is considered, the following questions should be asked: Is this patient falling asleep regularly against their will? Is this patient often sleepy while driving? Is this patient experiencing difficulty at work because of excessive sleepiness? Is sleep refreshing? Is surgery for snoring being considered (OSA should be excluded first)? The gold standard for investigation of OSA is polysomnography. It is possible to diagnose almost 90% of OSA patients from limited sleep studies often conducted on a domiciliary basis with portable diagnostic equipment.


Assuntos
Doenças Cardiovasculares/etiologia , Apneia Obstrutiva do Sono/complicações , Humanos , Encaminhamento e Consulta , Fatores de Risco , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA