RESUMO
Neural crest-like stem cells resembling embryonic neural crest cells (NCs) can be derived from adult human tissues such as the epidermis. However, these cells lose their multipotency rapidly in culture limiting their expansion for clinical use. Here, we show that the multipotency of keratinocyte-derived NCs (KC-NCs) can be preserved by activating the Wnt and BMP signaling axis, promoting expression of key NC-specifier genes and ultimately enhancing their differentiation potential. We also show that transcriptional changes leading to multipotency are linked to metabolic reprogramming of KC-NCs to a highly glycolytic state. Specifically, KC-NCs treated with CHIR and BMP2 rely almost exclusively on glycolysis for their energy needs, as seen by increased lactate production, glucose uptake, and glycolytic enzyme activities. This was accompanied by mitochondrial depolarization and decreased mitochondrial ATP production. Interestingly, the glycolytic end-product lactate stabilized ß-catenin and further augmented NC-gene expression. Taken together, our study shows that activation of the Wnt/BMP signaling coordinates the metabolic demands of neural crest-like stem cells governing decisions regarding multipotency and differentiation, with possible implications for regenerative medicine.
Assuntos
Crista Neural , Células-Tronco , Humanos , Diferenciação Celular , Via de Sinalização WntRESUMO
To understand the effect of counter ions (Na+) on the secondary conformation and functionality of the lysozyme, we have studied the interaction of lysozyme with counterion associated iron oxide nanoparticles (IONPs). The investigation was carried out at pH 7.4 and 9.0, with three different types of NPs, namely, bare IONPs, low molecular weight chitosan modified IONPs (LMWC-IONPs) and the counterion (Na+) associated sodium tripolyphosphate IONPs (STP-LMWC-IONPs) and confirmed by using various spectroscopy techniques. The difference in UV-vis absorbance (ΔA) between native and STP-LMWC-IONPs interacted hen egg white lysozyme (HEWL) was greater than that between native and NPs interacted HEWL at pH 9.0 compared with pH 7.4. Furthermore, STP-LMWC-IONPs exhibited quenching effect on lysozyme fluorescence spectrum at pH 9.0 due to binding of Na+ counterions to the protein, confirming denaturation of the latter. After HEWL interaction with STP-LMWC-IONPs (pH 9.0), CD spectra revealed a conformational change in the secondary structure of HEWL. Also, counterion induced lysozyme inactivation, due to interaction with nanoparticles at pH 9.0, was confirmed by enzymatic activity assay involving lysis of Micrococcus lysodeikticus. In conclusion, pH 9.0 was observed to be a more favorable condition, compared to pH 7.4, for the strongest electrostatic interaction between lysozyme and NPs. We postulate that the counterions in nanoparticle surface-coating can ameliorate protein misfolding or unfolding and also prevent their aggregation and, therefore, can be considered as a powerful and potential therapeutic strategy to treat incurable neurodegenerative disorders.
Assuntos
Compostos Férricos/metabolismo , Nanopartículas Metálicas/química , Muramidase/metabolismo , Animais , Domínio Catalítico , Galinhas , Quitosana/química , Quitosana/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Micrococcus/enzimologia , Peso Molecular , Muramidase/química , Polifosfatos/química , Polifosfatos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína/efeitos dos fármacos , Sódio/química , Eletricidade EstáticaRESUMO
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Assuntos
Músculo Esquelético , Proteína Homeobox Nanog , Regeneração Nervosa , Junção Neuromuscular , Traumatismos dos Nervos Periféricos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/genética , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Camundongos , Junção Neuromuscular/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Regeneração Nervosa/fisiologia , Reprogramação Celular/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Modelos Animais de Doenças , Nervo Isquiático/lesões , Desenvolvimento Muscular/genética , Camundongos Endogâmicos C57BL , Masculino , Feminino , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Neurogênese/genética , Vesículas Sinápticas/metabolismo , Camundongos Transgênicos , Doxiciclina/farmacologiaRESUMO
Neural Crest cells (NC) are a multipotent cell population that give rise to a multitude of cell types including Schwann cells (SC) in the peripheral nervous system (PNS). Immature SC interact with neuronal axons via the neuregulin 1 (NRG1) ligand present on the neuronal surface and ultimately form the myelin sheath. Multiple attempts to derive functional SC from pluripotent stem cells have met challenges with respect to expression of mature markers and axonal sorting. Here, they hypothesized that sustained signaling from immobilized NRG1 (iNRG1) might enhance the differentiation of NC derived from glabrous neonatal epidermis towards a SC phenotype. Using this strategy, NC derived SC expressed mature markers to similar levels as compared to explanted rat sciatic SC. Signaling studies revealed that sustained NRG1 signaling led to yes-associated protein 1 (YAP) activation and nuclear translocation. Furthermore, NC derived SC on iNRG1 exhibited mature SC function as they aligned with rat dorsal root ganglia (DRG) neurons in an in vitro coculture model; and most notably, aligned on neuronal axons upon implantation in a chick embryo model in vivo. Taken together their work demonstrated the importance of signaling dynamics in SC differentiation, aiming towards development of drug testing platforms for de-myelinating disorders.
Assuntos
Diferenciação Celular , Crista Neural , Neuregulina-1 , Células de Schwann , Animais , Células de Schwann/metabolismo , Diferenciação Celular/fisiologia , Neuregulina-1/metabolismo , Neuregulina-1/genética , Ratos , Crista Neural/metabolismo , Crista Neural/citologia , Células Cultivadas , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Ratos Sprague-DawleyRESUMO
Mitochondrial dysfunction is a hallmark of cellular senescence, with the loss of mitochondrial function identified as a potential causal factor contributing to senescence-associated decline in cellular functions. Our recent findings revealed that ectopic expression of the pluripotency transcription factor NANOG rejuvenates dysfunctional mitochondria of senescent cells by rewiring metabolic pathways. In this study, we report that NANOG restores the expression of key enzymes, PYCR1 and PYCR2, in the proline biosynthesis pathway. Additionally, senescent mesenchymal stem cells manifest severe mitochondrial respiratory impairment, which is alleviated through proline supplementation. Proline induces mitophagy by activating AMP-activated protein kinase α and upregulating Parkin expression, enhancing mitochondrial clearance and ultimately restoring cell metabolism. Notably, proline treatment also mitigates several aging hallmarks, including DNA damage, senescence-associated ß-galactosidase, inflammatory cytokine expressions, and impaired myogenic differentiation capacity. Overall, this study highlights the role of proline in mitophagy and its potential in reversing senescence-associated mitochondrial dysfunction and aging hallmarks.
Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Senescência Celular , Prolina/farmacologiaRESUMO
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. The onset of PNI is characterized by nerve degeneration distal to the nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generated a mouse model in which NANOG, a pluripotency-associated transcription factor can be expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulated the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression led to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation, and downregulation of key muscle atrophy genes. Further, NANOG mice demonstrated extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice showed greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming the muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
RESUMO
Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.
Assuntos
Autofagia , Senescência Celular , Morfolinas , Desenvolvimento Muscular , Mioblastos Esqueléticos , Inibidores de Proteínas Quinases , Purinas , Senescência Celular/efeitos dos fármacos , Morfolinas/farmacologia , Purinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Humanos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/fisiologia , Autofagia/efeitos dos fármacos , Insulina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Resistência à Insulina , Células Cultivadas , Desenvolvimento Muscular/efeitos dos fármacosRESUMO
Mitochondrial dysfunction, a hallmark of aging, has been associated with the onset of aging phenotypes and age-related diseases. Here, we report that impaired mitochondrial function is associated with increased glutamine catabolism in senescent human mesenchymal stem cells (MSCs) and myofibroblasts derived from patients suffering from Hutchinson-Gilford progeria syndrome. Increased glutaminase (GLS1) activity accompanied by loss of urea transporter SLC14A1 induces urea accumulation, mitochondrial dysfunction, and DNA damage. Conversely, blocking GLS1 activity restores mitochondrial function and leads to amelioration of aging hallmarks. Interestingly, GLS1 expression is regulated through the JNK pathway, as demonstrated by chemical and genetic inhibition. In agreement with our in vitro findings, tissues isolated from aged or progeria mice display increased urea accumulation and GLS1 activity, concomitant with declined mitochondrial function. Inhibition of glutaminolysis in progeria mice improves mitochondrial respiratory chain activity, suggesting that targeting glutaminolysis may be a promising strategy for restoring age-associated loss of mitochondrial function.
Assuntos
Progéria , Humanos , Camundongos , Animais , Idoso , Mitocôndrias , Células-Tronco , Membranas Mitocondriais , Envelhecimento , Agitação PsicomotoraRESUMO
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC-like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC-like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Assuntos
Redes Reguladoras de Genes/genética , Crista Neural/metabolismo , Células de Schwann/metabolismo , Células-Tronco/metabolismo , HumanosRESUMO
Neural crest (NC) cells are multipotent stem cells that arise from the embryonic ectoderm, delaminate from the neural tube in early vertebrate development and migrate throughout the developing embryo, where they differentiate into various cell lineages. Here we show that multipotent and functional NC cells can be derived by induction with a growth factor cocktail containing FGF2 and IGF1 from cultures of human inter-follicular keratinocytes (KC) isolated from elderly donors. Adult NC cells exhibited longer doubling times as compared to neonatal NC cells, but showed limited signs of cellular senescence despite the advanced age of the donors and exhibited significantly younger epigenetic age as compared to KC. They also maintained their multipotency, as evidenced by their ability to differentiate into all NC-specific lineages including neurons, Schwann cells, melanocytes, and smooth muscle cells (SMC). Notably, upon implantation into chick embryos, adult NC cells behaved similar to their embryonic counterparts, migrated along stereotypical pathways and contributed to multiple NC derivatives in ovo. These results suggest that KC-derived NC cells may provide an easily accessible, autologous source of stem cells that can be used for treatment of neurodegenerative diseases or as a model system for studying disease pathophysiology and drug development.