Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(4): 1131-1143, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417823

RESUMO

Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or the tumor microenvironment. Exploring the potential variations in the spatial co-occurrence or colocalization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process and functional analysis of variance. Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered due to data-collection complexities. We demonstrate the superior statistical power and robustness of the method in comparison with existing approaches through realistic simulation studies. Furthermore, we apply the method to three real data sets on different diseases collected using different imaging platforms. In particular, one of these data sets reveals novel insights into the spatial characteristics of various types of colorectal adenoma.


Assuntos
Simulação por Computador , Análise de Variância
2.
J Proteome Res ; 23(2): 786-796, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38206822

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.


Assuntos
Dieta Ocidental , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Polissacarídeos/química , Glicosilação
3.
Glycobiology ; 34(8)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38869882

RESUMO

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Assuntos
Manose , Polissacarídeos , Humanos , Feminino , Polissacarídeos/metabolismo , Polissacarídeos/química , Manose/metabolismo , Manose/química , Pessoa de Meia-Idade , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Glicômica , Mama/metabolismo , Mama/química , Mama/patologia , Fucose/metabolismo , Fucose/química , Adulto , Microambiente Tumoral
4.
Mass Spectrom Rev ; 42(2): 674-705, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34392557

RESUMO

Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.


Assuntos
Polissacarídeos , Humanos , Espectrometria de Massas/métodos , Glicosilação , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Mol Cell Proteomics ; 21(5): 100225, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331917

RESUMO

Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is characterized by inflammation, hepatocyte injury, and fibrosis. Further, NASH is a risk factor for cirrhosis and hepatocellular carcinoma. Previous research demonstrated that serum N-glycan profiles can be altered in NASH patients. Here, we hypothesized that these N-glycan modifications may be associated with specific liver damage in NAFLD and NASH. To investigate the N-glycome profile in tissue, imaging mass spectrometry was used for a qualitative and quantitative in situ N-linked glycan analysis of mouse and human NAFLD/NASH tissue. A murine model was used to induce NAFLD and NASH through ad libitum feeding with either a high-fat diet or a Western diet, respectively. Mice fed a high-fat diet or Western diet developed inflammation, steatosis, and fibrosis, consistent with NAFLD/NASH phenotypes. Induction of NAFLD/NASH for 18 months using high caloric diets resulted in increased expression of mannose, complex/fucosylated, and hybrid N-glycan structures compared to control mouse livers. To validate the animal results, liver biopsy specimens from 51 human NAFLD/NASH patients representing the full range of NASH Clinical Research Network fibrosis stages were analyzed. Importantly, the same glycan alterations observed in mouse models were observed in human NASH biopsies and correlated with the degree of fibrosis. In addition, spatial glycan alterations were localized specifically to histopathological changes in tissue like fibrotic and fatty areas. We demonstrate that the use of standard staining's combined with imaging mass spectrometry provide a full profile of the origin of N-glycan modifications within the tissue. These results indicate that the spatial distribution of abundances of released N-glycans correlate with regions of tissue steatosis associated with NAFLD/NASH.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Ocidental , Modelos Animais de Doenças , Glicosilação , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Espectrometria de Massas , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
Anal Chem ; 95(27): 10289-10297, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37293957

RESUMO

N-linked glycosylation plays an important role in both the innate and adaptive immune response through the modulation of cell surface receptors as well as general cell-to-cell interactions. The study of immune cell N-glycosylation is gaining interest but is hindered by the complexity of cell-type-specific N-glycan analysis. Analytical techniques such as chromatography, LC-MS/MS, and the use of lectins are all currently used to analyze cellular glycosylation. Issues with these analytical techniques include poor throughput, which is often limited to a single sample at a time, lack of structural information, the need for a large amount of starting materials, and the requirement for cell purification, thereby reducing their feasibility for N-glycan study. Here, we report the development of a rapid antibody array-based approach for the capture of specific nonadherent immune cells coupled with MALDI-IMS to analyze cellular N-glycosylation. This workflow is adaptable to multiple N-glycan imaging approaches such as the removal or stabilization and derivatization of terminal sialic acid residues providing unique avenues of analysis that have otherwise not been explored in immune cell populations. The reproducibility, sensitivity, and versatility of this assay provide an invaluable tool for researchers and clinical applications, significantly expanding the field of glycoimmunology.


Assuntos
Anticorpos , Espectrometria de Massas em Tandem , Glicosilação , Cromatografia Líquida , Reprodutibilidade dos Testes , Anticorpos/metabolismo , Polissacarídeos/química
7.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126482

RESUMO

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Ácidos Siálicos/química , Polissacarídeos/química , Linhagem Celular Tumoral
8.
Anal Bioanal Chem ; 415(28): 7011-7024, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843548

RESUMO

The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.


Assuntos
Anticorpos , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/análise , Peptídeos/análise , Colágeno , Lasers
9.
Mol Cell Proteomics ; 20: 100012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581409

RESUMO

The early detection of pancreatic ductal adenocarcinoma (PDAC) is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers carbohydrate antigen 19-9 (CA19-9) and sialylated tumor-related antigen (sTRA) are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and noncancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry (IMS) approach was used to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients with PDAC represented by tissue microarrays and whole-tissue sections. Orthogonally, these same tissues were characterized by multiround immunofluorescence that defined expression of CA19-9 and sTRA as well as other lectins toward carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated biantennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9-expressing tissues tended to be biantennary, triantennary, and tetra-antennary structures with both core and terminal fucose residues and bisecting GlcNAc. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored triantennary and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-immunohistochemistry and lectin-IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Pâncreas/metabolismo
10.
J Proteome Res ; 21(8): 1930-1938, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35766466

RESUMO

Alterations to N-glycan expression are relevant to the progression of various diseases, particularly cancer. In many cases, specific N-glycan structural features such as sialylation, fucosylation, and branching are of specific interest. A novel MALDI imaging mass spectrometry workflow has been recently developed to analyze these features of N-glycosylation through the utilization of endoglycosidase enzymes to cleave N-glycans from associated glycoproteins. Enzymes that have previously been utilized to cleave N-glycans include peptide-N-glycosidase F (PNGase F) to target N-glycans indiscriminately and endoglycosidase F3 (Endo F3) to target core fucosylated N-glycans. In addition to these endoglycosidases, additional N-glycan cleaving enzymes could be used to target specific structural features. Sialidases, also termed neuraminidases, are a family of enzymes that remove terminal sialic acids from glycoconjugates. This work aims to utilize sialidase, in conjunction with PNGase F/Endo F3, to enzymatically remove sialic acids from N-glycans in an effort to increase sensitivity for nonsialylated N-glycan MALDI-IMS peaks. Improving detection of nonsialylated N-glycans allows for a more thorough analysis of specific structural features such as fucosylation or branching, particularly of low abundant structures. Sialidase utilization in MALDI-IMS dramatically increases sensitivity and increases on-tissue endoglycosidase efficiency, making it a very useful companion technique to specifically detect nonsialylated N-glycans.


Assuntos
Neuraminidase , Polissacarídeos , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Polissacarídeos/química , Ácidos Siálicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
J Mol Cell Cardiol ; 154: 6-20, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516683

RESUMO

Congenital aortic valve stenosis (AS) progresses as an obstructive narrowing of the aortic orifice due to deregulated extracellular matrix (ECM) production by aortic valve (AV) leaflets and leads to heart failure with no effective therapies. Changes in glycoprotein and proteoglycan distribution are a hallmark of AS, yet valvular carbohydrate content remains virtually uncharacterized at the molecular level. While almost all glycoproteins clinically linked to stenotic valvular modeling contain multiple sites for N-glycosylation, there are very few reports aimed at understanding how N-glycosylation contributes to the valve structure in disease. Here, we tested for spatial localization of N-glycan structures within pediatric congenital aortic valve stenosis. The study was done on valvular tissues 0-17 years of age with de-identified clinical data reporting pre-operative valve function spanning normal development, aortic valve insufficiency (AVI), and pediatric endstage AS. High mass accuracy imaging mass spectrometry (IMS) was used to localize N-glycan profiles in the AV structure. RNA-Seq was used to identify regulation of N-glycan related enzymes. The N-glycome was found to be spatially localized in the normal aortic valve, aligning with fibrosa, spongiosa or ventricularis. In AVI diagnosed tissue, N-glycans localized to hypertrophic commissures with increases in pauci-mannose structures. In all valve types, sialic acid (N-acetylneuraminic acid) N-glycans were the most abundant N-glycan group. Three sialylated N-glycans showed common elevation in AS independent of age. On-tissue chemical methods optimized for valvular tissue determined that aortic valve tissue sialylation shows both α2,6 and α2,3 linkages. Specialized enzymatic strategies demonstrated that core fucosylation is the primary fucose configuration and localizes to the normal fibrosa with disparate patterning in AS. This study identifies that the human aortic valve structure is spatially defined by N-glycomic signaling and may generate new research directions for the treatment of human aortic valve disease.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Glicômica , Glicoproteínas/metabolismo , Estenose da Valva Aórtica/congênito , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores , Criança , Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Glicômica/métodos , Glicosilação , Humanos , Imagem Molecular , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Proteome Res ; 19(8): 2989-2996, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441096

RESUMO

Specific alterations in N-linked glycans, such as core fucosylation, are associated with many cancers and other disease states. Because of the many possible anomeric linkages associated with fucosylated N-glycans, determination of specific anomeric linkages and the site of fucosylation (i.e., core vs outer arm) can be difficult to elucidate. A new MALDI mass spectrometry imaging workflow in formalin-fixed clinical tissues is described using recombinant endoglycosidase F3 (Endo F3), an enzyme with a specific preference for cleaving core-fucosylated N-glycans attached to glycoproteins. In contrast to the broader substrate enzyme peptide-N-glycosidase F (PNGaseF), Endo F3 cleaves between the two core N-acetylglucosamine residues at the protein attachment site. On tissues, this results in a mass shift of 349.137 a.m.u. for core-fucosylated N-glycans when compared to N-glycans released with standard PNGaseF. Endo F3 can be used singly and in combination with PNGaseF digestion of the same tissue sections. Initial results in liver and prostate tissues indicate core-fucosylated glycans associated to specific tissue regions while still demonstrating a diverse mix of core- and outer arm-fucosylated glycans throughout all regions of tissue. By determining these specific linkages while preserving localization, more targeted diagnostic biomarkers for disease states are possible without the need for microdissection or solubilization of the tissue.


Assuntos
Acetilglucosamina , Polissacarídeos , Glicosilação , Humanos , Masculino , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Anal Chem ; 91(13): 8429-8435, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31177770

RESUMO

A new platform for N-glycoprotein analysis from serum that combines matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) workflows with antibody slide arrays is described. Antibody panel based (APB) N-glycan imaging allows for the specific capture of N-glycoproteins by antibodies on glass slides and N-glycan analysis in a protein-specific and multiplexed manner. Development of this technique has focused on characterizing two abundant and well-studied human serum glycoproteins, alpha-1-antitrypsin and immunoglobulin G. Using purified standard solutions and 1 µL samples of human serum, both glycoproteins can be immunocaptured and followed by enzymatic release of N-glycans. N-Glycans are detected with a MALDI FT-ICR mass spectrometer in a concentration-dependent manner while maintaining specificity of capture. Importantly, the N-glycans detected via slide-based antibody capture were identical to that of direct analysis of the spotted standards. As a proof of concept, this workflow was applied to patient serum samples from individuals with liver cirrhosis to accurately detect a characteristic increase in an IgG N-glycan. This novel approach to protein-specific N-glycan analysis from an antibody panel can be further expanded to include any glycoprotein for which a validated antibody exists. Additionally, this platform can be adapted for analysis of any biofluid or biological sample that can be analyzed by antibody arrays.


Assuntos
Biomarcadores/metabolismo , Glicômica/métodos , Glicoproteínas/metabolismo , Cirrose Hepática/diagnóstico , Imagem Óptica/métodos , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estudos de Casos e Controles , Glicoproteínas/química , Glicosilação , Humanos , Cirrose Hepática/metabolismo , Polissacarídeos/química
14.
Int J Mass Spectrom ; 437: 69-76, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31031563

RESUMO

Tissue necrosis is a form of cell death common in advanced and aggressive solid tumors, and is associated with areas of intratumoral chronic ischemia. The histopathology of necrotic regions appear as a scaffold of cellular membrane remnants, reflective of the hypoxia and cell degradation events associated with this cellular death pathway. Changes in the glycosylation of cell surface proteins is another common feature of cancer progression. Using a recently developed mass spectrometry imaging approach to evaluate N-linked glycan distributions in human formalin-fixed clinical cancer tissues, differences in the glycan structures of regions of tumor, stroma and necrosis were evaluated. While the structural glycan classes detected in the tumor and stromal regions are typically classified as high mannose or branched glycans, the glycans found in necrotic regions displayed limited branching, contained sialic acid modifications and lack fucose modifications. While this phenomenon was initially classified in breast cancer tissues, it has been also seen in cervical, thyroid and liver cancer samples. These changes in glycosylation within the necrotic regions could provide further mechanistic insight to necrotic changes in cancer tissue and provide new research directions for identifying prognostic markers of necrosis.

15.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126011

RESUMO

(1) Glycoproteins account for ~80% of proteins located at the cell surface and in the extracellular matrix. A growing body of evidence indicates that α-L-fucose protein modifications contribute to breast cancer progression and metastatic disease. (2) Using a combination of techniques, including matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) based in cell and on tissue imaging and glycan sequencing using exoglycosidase analysis coupled to hydrophilic interaction ultra-high performance liquid chromatography (HILIC UPLC), we establish that a core-fucosylated tetra-antennary glycan containing a single N-acetyllactosamine (F(6)A4G4Lac1) is associated with poor clinical outcomes in breast cancer, including lymph node metastasis, recurrent disease, and reduced survival. (3) This study is the first to identify a single N-glycan, F(6)A4G4Lac1, as having a correlation with poor clinical outcomes in breast cancer.


Assuntos
Amino Açúcares/análise , Neoplasias da Mama/patologia , Fucose/análise , Polissacarídeos/análise , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Glicoproteínas/química , Glicosilação , Humanos , Linfonodos/patologia , Camundongos Endogâmicos BALB C , Metástase Neoplásica/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise de Sobrevida
16.
J Proteome Res ; 17(10): 3454-3462, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30110170

RESUMO

Hepatocellular carcinoma (HCC) remains as the fifth most common cancer in the world and accounts for more than 700,000 deaths annually. Changes in serum glycosylation have long been associated with this cancer but the source of that material is unknown and direct glycan analysis of HCC tissues has been limited. Our laboratory previously developed a method of in situ tissue based N-linked glycan imaging that bypasses the need for microdissection and solubilization of tissue prior to analysis. We used this methodology in the analysis of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue with either adjacent untransformed or tissue from patients with liver cirrhosis but no cancer. Ten glycans were found significantly elevated in HCC tissues as compared to cirrhotic or adjacent tissue. These glycans fell into two major classes, those with increased levels of fucosylation and those with increased levels of branching with or without any fucose modifications. In addition, increased levels of fucosylated glycoforms were associated with a reduction in survival time. This work supports the hypothesis that the increased levels of fucosylated N-linked glycans in HCC serum are produced directly from the cancer tissue.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Polissacarídeos/metabolismo , Adulto , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Feminino , Fucose/metabolismo , Glicosilação , Histocitoquímica/métodos , Humanos , Estimativa de Kaplan-Meier , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Polissacarídeos/química , Análise Serial de Tecidos/métodos
17.
Adv Exp Med Biol ; 1104: 59-76, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30484244

RESUMO

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for two decades to profile the glycan constituents of biological samples. An adaptation of the method to tissues, MALDI mass spectrometry imaging (MALDI-MSI), allows high-throughput spatial profiling of hundreds to thousands of molecules within a single thin tissue section. The ability to profile N-glycans within tissues using MALDI-MSI is a recently developed method that allows identification and localization of 40 or more N-glycans. The key component is to apply a molecular coating of peptide-N-glycosidase to tissues, an enzyme that releases N-glycans from their protein carrier. In this chapter, the methods and approaches to robustly and reproducibly generate two-dimensional N-glycan tissue maps by MALDI-MSI workflows are summarized. Current strengths and limitations of the approach are discussed, as well as potential future applications of the method.


Assuntos
Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Distribuição Tecidual
18.
Anal Chem ; 88(15): 7745-53, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27373711

RESUMO

On-tissue digestion matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to record spatially correlated molecular information from formalin-fixed, paraffin-embedded (FFPE) tissue sections. In this work, we present the in situ multimodal analysis of N-linked glycans and proteins from the same FFPE tissue section. The robustness and applicability of the method are demonstrated for several tumors, including epithelial and mesenchymal tumor types. Major analytical aspects, such as lateral diffusion of the analyte molecules and differences in measurement sensitivity due to the additional sample preparation methods, have been investigated for both N-glycans and proteolytic peptides. By combining the MSI approach with extract analysis, we were also able to assess which mass spectral peaks generated by MALDI-MSI could be assigned to unique N-glycan and peptide identities.


Assuntos
Peptídeos/análise , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antígenos/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Glicoproteínas/metabolismo , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/patologia , Inclusão em Parafina , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeos/metabolismo , Polissacarídeos/metabolismo
19.
Anal Chem ; 88(11): 5904-13, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145236

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a rapidly evolving field in which mass spectrometry techniques are applied directly on tissues to characterize the spatial distribution of various molecules such as lipids, protein/peptides, and recently also N-glycans. Glycans are involved in many biological processes and several glycan changes have been associated with different kinds of cancer, making them an interesting target group to study. An important analytical challenge for the study of glycans by MALDI mass spectrometry is the labile character of sialic acid groups which are prone to in-source/postsource decay, thereby biasing the recorded glycan profile. We therefore developed a linkage-specific sialic acid derivatization by dimethylamidation and subsequent amidation and transferred this onto formalin-fixed paraffin-embedded (FFPE) tissues for MALDI imaging of N-glycans. Our results show (i) the successful stabilization of sialic acids in a linkage specific manner, thereby not only increasing the detection range, but also adding biological meaning, (ii) that no noticeable lateral diffusion is induced during to sample preparation, (iii) the potential of mass spectrometry imaging to spatially characterize the N-glycan expression within heterogeneous tissues.


Assuntos
Formaldeído/química , Inclusão em Parafina , Polissacarídeos/química , Ácidos Siálicos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Configuração de Carboidratos
20.
J Proteome Res ; 14(6): 2594-605, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25938165

RESUMO

The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3' linkage; CGL2 for motifs with fucose in a 2' linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in ∼75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4' linkage, tended to upregulate fucose in a 3' linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2' linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3' fucose, sialyl-Lewis X. Thus, glycans containing 3' fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.


Assuntos
Adenocarcinoma/metabolismo , Fucose/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Regulação para Cima , Quimiocina CCL2/metabolismo , Humanos , Sondas Moleculares , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA