Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 31: 102303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980549

RESUMO

MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.


Assuntos
Antagomirs/química , Antagomirs/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Nanopartículas/química , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Nanocápsulas/química , Nanotecnologia/métodos , Polímeros/química
2.
Crit Rev Eukaryot Gene Expr ; 30(3): 245-252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749111

RESUMO

Peutz-Jeghers syndrome (PJS) is a well-described inherited syndrome, characterized by the development of gastrointestinal polyps and characteristic mucocutaneous freckling. PJS is an autosomal prevailing disease, due to genetic mutation on chromosome 19p, manifested by restricted mucocutaneous melanosis in association with gastrointestinal (GI) polyposis. The gene for PJS has recently been shown to be a serine/threonine kinase, known as LKB1 or STK11, which maps to chromosome subband 19p13.3. This gene has a putative coding region of 1302 bp, divided into nine exons, and acts as a tumor suppressor in the hamartomatous polyps of PJS patients and in the other neoplasms that develop in PJS patients. It is probable that these neoplasms develop from hamartomas, but it remains possible that the LKB1 or STK11 locus plays a role in a different genetic pathway of tumor growth in the cancers of PJS patients. This article focuses on the role of LKB1 or STK11 gene expression in PJS and related cancers.


Assuntos
Síndrome de Peutz-Jeghers/enzimologia , Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinases/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Mutação , Neoplasias/genética , Síndrome de Peutz-Jeghers/patologia
3.
Drug Dev Res ; 81(4): 419-436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048757

RESUMO

Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neutrófilos/metabolismo , Doenças Respiratórias/tratamento farmacológico , Animais , Doença Crônica , Humanos , Sistema Imunitário/imunologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Neutrófilos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Doenças Respiratórias/imunologia , Doenças Respiratórias/fisiopatologia
4.
Inflammopharmacology ; 28(4): 795-817, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32189104

RESUMO

Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/patologia , Transdução de Sinais/fisiologia , Animais , Doença Crônica , Humanos
5.
J Cell Physiol ; 234(10): 16703-16723, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912142

RESUMO

Chronic obstructive pulmonary disease accounts as the leading cause of mortality worldwide prominently affected by genetic and environmental factors. The disease is characterized by persistent coughing, breathlessness airways inflammation followed by a decrease in forced expiratory volume1 and exacerbations, which affect the quality of life. Determination of genetic, epigenetic, and oxidant biomarkers to evaluate the progression of disease has proved complicated and challenging. Approaches including exome sequencing, genome-wide association studies, linkage studies, and inheritance and segregation studies played a crucial role in the identification of genes, their pathways and variation in genes. This review highlights multiple approaches for biomarker and gene identification, which can be used for differential diagnosis along with the genome editing tools to study genes associated with the development of disease and models their function. Further, we have discussed the approaches to rectify the abnormal gene functioning of respiratory tissues and various novel gene editing techniques like Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9).


Assuntos
Terapia Genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/terapia , Biomarcadores , Edição de Genes , Humanos
6.
Drug Dev Res ; 80(6): 714-730, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31691339

RESUMO

Lung diseases are the leading cause of mortality worldwide. The currently available therapies are not sufficient, leading to the urgent need for new therapies with sustained anti-inflammatory effects. Small/short or silencing interfering RNA (siRNA) has potential therapeutic implications through post-transcriptional downregulation of the target gene expression. siRNA is essential in gene regulation, so is more favorable over other gene therapies due to its small size, high specificity, potency, and no or low immune response. In chronic respiratory diseases, local and targeted delivery of siRNA is achieved via inhalation. The effectual delivery can be attained by the generation of aerosols via inhalers and nebulizers, which overcomes anatomical barriers, alveolar macrophage clearance and mucociliary clearance. In this review, we discuss the different siRNA nanocarrier systems for chronic respiratory diseases, for safe and effective delivery. siRNA mediated pro-inflammatory gene or miRNA targeting approach can be a useful approach in combating chronic respiratory inflammatory conditions and thus providing sustained drug delivery, reduced therapeutic dose, and improved patient compliance. This review will be of high relevance to the formulation, biological and translational scientists working in the area of respiratory diseases.


Assuntos
Portadores de Fármacos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Doenças Respiratórias/tratamento farmacológico , Animais , Humanos
9.
ACS Mater Au ; 3(6): 600-619, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089666

RESUMO

Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.

10.
Neurotoxicology ; 90: 19-34, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219781

RESUMO

The current study elucidates pharmacological evaluation of bromelain as a bioactive compound obtain from pineapple stem belongs to family Bromeliaceae in AlCl3 and D - galactose induced mice. In mice, co-administration of AlCl3 at dose 5 mg/kg b.w., via the oral route, and D - galactose at dose 60 mg/kg b.w., via intraperitoneal route for 90 days resulted in cognitive impairment, spatial learning, and memory deficits, as well as neurotoxicity. However, 30 consecutive days, treatments via an intraperitoneal route with bromelain low dose (Brm L) at dose 10 mg/kg b.w., bromelain high dose (Brm H) at dose 20 mg/kg b.w., donepezil (Dnpz) at dose 2 mg/kg b.w., and Brm L + Dnpz at doses 10, 2 mg/kg b.w. were considerably reversed the effect of AlCl3 and D - galactose induced AD mice. Consequences of behavioral parameters (Morris water maze, elevated plus maze and locomotor), biochemical estimation (MDA, GSH, SOD, CAT, Nitrite and AChE), and ELISA tests (mouse BACE, Aß1 - 42, TNF-α, IL-6, and BDNF) confirmed significant (p < 0.05) neuroprotective effect of treatments in AlCl3 and D - galactose induced mice. Additionally, hematoxylin and eosin staining of the cerebral cortex and the hippocampus exposed eosinophilic lesions and hyperchromatic nuclei in AD mice, but these neurodegenerative effects were eliminated by Brm L, Brm H, Dnpz, and Brm L + Dnpz treatments. Thus, bromelain alone and in combination with donepezil prevent AlCl3 and D - galactose induced spatial learning and memory deficits, as well as cognitive impairment, by increasing cholinergic activity and synaptic plasticity, as well as reducing oxidative damage, neuroinflammation, Aß 1-42 aggregations, and histopathological damage, according to our findings. The present study consequences indicate that bromelain alone and in combination with donepezil appears to have neuroprotective properties. Henceforward, this may be a promising treatment option for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Cloreto de Alumínio/farmacologia , Cloreto de Alumínio/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Animais , Bromelaínas/farmacologia , Bromelaínas/uso terapêutico , Modelos Animais de Doenças , Donepezila/farmacologia , Donepezila/uso terapêutico , Galactose/toxicidade , Hipocampo , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo
11.
Future Med Chem ; 14(4): 271-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35019757

RESUMO

Chronic respiratory disorders affect millions of people worldwide. Pathophysiological changes to the normal airway wall structure, including changes in the composition and organization of its cellular and molecular constituents, are referred to as airway remodeling. The inadequacy of effective treatment strategies and scarcity of novel therapies available for the treatment and management of chronic respiratory diseases have given rise to a serious impediment in the clinical management of such diseases. The progress made in advanced drug delivery, has offered additional advantages to fight against the emerging complications of airway remodeling. This review aims to address the gaps in current knowledge about airway remodeling, the relationships between remodeling, inflammation, clinical phenotypes and the significance of using novel drug delivery methods.


Assuntos
Remodelação das Vias Aéreas , Portadores de Fármacos/química , Inflamação/patologia , Administração por Inalação , Asma/terapia , Humanos , Inflamação/metabolismo , Pulmão/anatomia & histologia , Pulmão/fisiologia , Adesão à Medicação , Doença Pulmonar Obstrutiva Crônica/terapia
12.
Environ Sci Pollut Res Int ; 29(31): 46830-46847, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35171422

RESUMO

Non-small cell lung cancer (NSCLC) is reported to have a high incidence rate and is one of the most prevalent types of cancer contributing towards 85% of all incidences of lung cancer. Berberine is an isoquinoline alkaloid which offers a broad range of therapeutical and pharmacological actions against cancer. However, extremely low water solubility and poor oral bioavailability have largely restricted its therapeutic applications. To overcome these limitations, we formulated berberine-loaded liquid crystalline nanoparticles (LCNs) and investigated their in vitro antiproliferative and antimigratory activity in human lung epithelial cancer cell line (A549). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), trypan blue staining, and colony forming assays were used to evaluate the anti-proliferative activity, while scratch wound healing assay and a modified Boyden chamber assay were carried out to determine the anti-migratory activity. We also investigated major proteins associated with lung cancer progression. The developed nanoparticles were found to have an average particle size of 181.3 nm with spherical shape, high entrapment efficiency (75.35%) and have shown sustained release behaviour. The most remarkable findings reported with berberine-loaded LCNs were significant suppression of proliferation, inhibition of colony formation, inhibition of invasion or migration via epithelial mesenchymal transition, and proliferation related proteins associated with cancer progression. Our findings suggest that anti-cancer compounds with the problem of poor solubility and bioavailability can be overcome by formulating them into nanotechnology-based delivery systems for better efficacy. Further in-depth investigations into anti-cancer mechanistic research will expand and strengthen the current findings of berberine-LCNs as a potential NSCLC treatment option.


Assuntos
Berberina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Berberina/farmacologia , Berberina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química
13.
Oxid Med Cell Longev ; 2022: 8615242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509838

RESUMO

Bergapten (BP) or 5-methoxypsoralen (5-MOP) is a furocoumarin compound mainly found in bergamot essential oil but also in other citrus essential oils and grapefruit juice. This compound presents antibacterial, anti-inflammatory, hypolipemic, and anticancer effects and is successfully used as a photosensitizing agent. The present review focuses on the research evidence related to the therapeutic properties of bergapten collected in recent years. Many preclinical and in vitro studies have been evidenced the therapeutic action of BP; however, few clinical trials have been carried out to evaluate its efficacy. These clinical trials with BP are mainly focused on patients suffering from skin disorders such as psoriasis or vitiligo. In these trials, the administration of BP (oral or topical) combined with UV irradiation induces relevant lesion clearance rates. In addition, beneficial effects of bergamot extract were also observed in patients with altered serum lipid profiles and in people with nonalcoholic fatty liver. On the contrary, there are no clinical trials that investigate the possible effects on cancer. Although the bioavailability of BP is lower than that of its 8-methoxypsoralen (8-MOP) isomer, it has fewer side effects allowing higher concentrations to be administered. In conclusion, although the use of BP has therapeutic applications on skin disorders as a sensitizing agent and as components of bergamot extract as hypolipemic therapy, more trials are necessary to define the doses and treatment guidelines and its usefulness against other pathologies such as cancer or bacterial infections.


Assuntos
Metoxaleno , Óleos Voláteis , 5-Metoxipsoraleno , Humanos , Metoxaleno/efeitos adversos , Fármacos Fotossensibilizantes , Extratos Vegetais , Raios Ultravioleta
14.
Chem Biol Interact ; 351: 109706, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662570

RESUMO

The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.


Assuntos
Portadores de Fármacos/química , Pulmão/metabolismo , Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Administração por Inalação , Animais , Portadores de Fármacos/administração & dosagem , Humanos , Pulmão/efeitos dos fármacos , Pneumopatias/tratamento farmacológico , Nanopartículas/administração & dosagem , Nanopartículas/química , Peptídeos/uso terapêutico , Proteínas/uso terapêutico
15.
Curr Mol Pharmacol ; 14(3): 333-349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33557743

RESUMO

Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are major inflammatory respiratory diseases. Current mainstay therapy for asthma, and chronic obstructive pulmonary disease are corticosteroids, which have well-established side effect profiles. Phospholipids (PLs) are ubiquitous, diverse compounds with varying functions such as their structural role in the cell membrane, energy storage, and cell signaling. Recent advances in understanding PLs role as inflammatory mediators in the body as well as their widespread long-standing use as carrier molecules in drug delivery demonstrate the potential application of PLs in modulating inflammatory conditions. This review briefly explains the main mechanisms of inflammation in chronic respiratory diseases, current anti-inflammatory treatments and areas of unmet need. The structural features, roles of endogenous and exogenous phospholipids, including their use as pharmaceutical excipients, are reviewed. Current research on the immunomodulatory properties of PLs and their potential application in inflammatory diseases is the major section of this review. Considering the roles of PLs as inflammatory mediators and their safety profile established in pharmaceutical formulations, these small molecules demonstrate great potential as candidates in respiratory inflammation. Future studies need to focus on the immunomodulatory properties and the underlying mechanisms of PLs in respiratory inflammatory diseases.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Fosfolipídeos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Sistema Respiratório/metabolismo
16.
Curr Mol Pharmacol ; 14(3): 448-457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33568042

RESUMO

OBJECTIVE: The aim of present study was to formulate chitosan microspheres loaded with ethanolic extract of Lens culinaris Medikus (L.culinaris) seeds (ME) and to explore its anticancer potential against lung cancer (A549) cell line. METHODS: Central composite design was applied to prepare and optimise the chitosan microspheres. The prepared microspheres were evaluated for its physicochemical characterisation, in vitro drug release and anti-cancer potential in vitro. RESULTS: L.culinaris loaded chitosan microspheres were prepared successfully with suitable particle size, entrapment efficiency and drug release. The developed ME were spherical shaped with the particle size of 2.08 µm. The drug entrapment efficiency and cumulative drug release was found 1.58±0.02% and 81.95±0.35%, respectively. Differential scanning calorimetry studies revealed no interaction between drugs and polymers used. The cytotoxic effect of the optimised formulation revealed a significant response as compared to the ethanolic extract of L.culinaris seeds (IC50: 22.56 µg/ml vs. 63.58 µg/ml), which was comparable to that of reference drug, doxorubicin (22 µg/ml). These observations demonstrate that the optimised microspheres are effective against lung cancer (A549) cells. CONCLUSION: The significant cytotoxic response of the developed microspheres may be attributed due to its low particle size, high entrapment efficiency and prolonged drug release profile.


Assuntos
Antineoplásicos , Quitosana , Lens (Planta) , Quitosana/química , Microesferas , Extratos Vegetais/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-33573582

RESUMO

AIMS: The present investigation was aimed at exploring the phytoconstituents using Gas Chromatography Mass Spectroscopy and to evaluate antioxidant and anti-inflammatory properties of the leaf extracts. MATERIALS AND METHODS: The extracts were obtained sequentially with petroleum ether, ethyl acetate and water using Soxhlet apparatus. The anti-inflammatory property of the identified compounds using GC- MS spectroscopy was evaluated in silico. The antioxidant activity was performed by DPPH and H2O2 method whereas anti-inflammatory study was carried out by HRBC membrane stabilization method. Terpenoids were found to be a major constituents in petroleum ether extract while, phenols and flavonoids were predominantly found in ethyl acetate extract. RESULTS AND DISCUSSION: The GC-MS analysis of the extract revealed six major molecules including Squalene, 19ß, 28-epoxyleanan-3-ol and 2-tu-Butyl-5-chloromethyl-3-methyl-4-oxoimidazolidine- 1-carboxylic acid. The ethyl acetate extract showed a significant antioxidant activity (P<0.01) in both DPPH method (70.87%) and H2O2 method (73.58%) at 200 µg mL-1. Increased membrane stabilization of petroleum ether extract was observed in the in vitro anti-inflammatory activity study. A strong relationship between the terpenoid content and anti-inflammatory activity was obtained from the correlation (0.971) and docking study. CONCLUSION: These results justify T. involucrata to be a rich source of terpenoids with potent anti- inflammatory property.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
18.
Curr Pharm Des ; 27(1): 2-14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32723255

RESUMO

Curcumin is a major curcuminoid present in turmeric. The compound is attributed to various therapeutic properties, which include anti-oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and neuroprotection. Due to its therapeutic potential, curcumin has been employed for centuries in treating different ailments. Curcumin has been investigated lately as a novel therapeutic agent in the treatment of cancer. However, the mechanisms by which curcumin exerts its cytotoxic effects on malignant cells are still not fully understood. One of the main limiting factors in the clinical use of curcumin is its poor bioavailability and rapid elimination. Advancements in drug delivery systems such as nanoparticle-based vesicular drug delivery platforms have improved several parameters, namely, drug bioavailability, solubility, stability, and controlled release properties. The use of curcumin-encapsulated niosomes to improve the physical and pharmacokinetic properties of curcumin is one such approach. This review provides an up-to-date summary of nanoparticle-based vesicular drug carriers and their therapeutic applications. Specifically, we focus on niosomes as novel drug delivery formulations and their potential in improving the delivery of challenging small molecules, including curcumin. Overall, the applications of such carriers will provide a new direction for novel pharmaceutical drug delivery, as well as for biotechnology, nutraceutical, and functional food industries.


Assuntos
Curcumina , Neoplasias , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Solubilidade
19.
J Food Biochem ; 45(11): e13954, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609010

RESUMO

Metastasis represents the leading cause of death in lung cancer patients. C-X-C Motif Chemokine Ligand 8 (CXCL-8), Chemokine (C-C motif) ligand 20 (CCL-20) and heme oxygenase -1 (HO-1) play an important role in cancer cell proliferation and migration. Berberine is an isoquinoline alkaloid isolated from several herbs in the Papaveraceae family that exhibits anti-inflammatory, anticancer and antidiabetic properties. Therefore, the aim of present study is to investigate the inhibitory potential of berberine monoolein loaded liquid crystalline nanoparticles (berberine-LCNs) against cancer progression. Berberine-LCNs were prepared by mixing berberine, monoolein and poloxamer 407 (P407) using ultrasonication method. A549 cells were treated with or without 5 µM dose of berberine LCNs for 24 hr and total cellular protein was extracted and further analyzed for the protein expression of CCl-20, CXCL-8 and HO-1 using human oncology array kit. Our results showed that berberine-LCNs significantly reduced the expression of CCl-20, CXCL-8 and HO-1 at dose of 5µM. Collectively, our findings suggest that berberine-LCNs have inhibitory effect on inflammation/oxidative stress related cytokines i.e. CCL20, CXCL-8, and HO-1 which could be a novel therapeutic target for the management of lung cancer. PRACTICAL APPLICATIONS: Berberine is an isoquinoline alkaloid extracted from various plants of Papaveraceae family. CXCL-8, CCL-20 and HO-1 play an important role in cancer progression. Our study showed that Berberine LCNs significantly downregulate the expression of CXCL-8, CCL-20 and HO-1 which suggests that Berberine loaded nanoparticles could be a promising therapeutic alternative for the management of lung cancer.


Assuntos
Berberina , Nanopartículas , Neoplasias , Células A549 , Anti-Inflamatórios , Berberina/farmacologia , Berberina/uso terapêutico , Proliferação de Células , Humanos
20.
Recent Pat Nanotechnol ; 15(4): 351-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33357187

RESUMO

BACKGROUND: Nanosuspensions are colloidal systems consisting of pure drug and stabilizers, without matrix or lyophilized into a solid matrix. Nanosuspensions improve the solubility of the drug both in the aqueous and organic phases. Nanosuspensions are also known as brick dust molecules, as they increase the dissolution of a system and improve absorption. METHODS: Extensive information related to nanosuspensions and its associated patents were collected using Pub Med and Google Scholar. RESULTS: Over the last decade nanosuspensions have attracted tremendous interest in pharmaceutical research. It provides unique features including, improved solubility, high drug loading capacity, and passive targeting. These particles are cost-effective, simple, and have lesser side effects with minimal dose requirements. However, the stability of nanosuspensions still warrants attention. CONCLUSION: Nanosuspensions play a vital role in handling the numerous drug entities with difficult physico-chemical characteristics such as solubility and can further aid with a range of routes that include nasal, transdermal, ocular, parenteral, pulmonary etc. This review highlights the relevance of nanosuspensions in achieving safe, effective and targeted drug delivery.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanopartículas , Administração Cutânea , Humanos , Tamanho da Partícula , Patentes como Assunto , Solubilidade , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA