RESUMO
Ephrin-B-EphB signaling can promote pain through ligand-receptor interactions between peripheral cells, like immune cells expressing ephrin-Bs, and EphB receptors expressed by DRG neurons. Previous studies have shown increased ephrin-B2 expression in peripheral tissues like synovium of rheumatoid and osteoarthritis patients, indicating the clinical significance of this signaling. The primary goal of this study was to understand how ephrin-B2 acts on mouse and human DRG neurons, which express EphB receptors, to promote pain and nociceptor plasticity. We hypothesized that ephrin-B2 would promote nociceptor plasticity and hyperalgesic priming through MNK-eIF4E signaling, a critical mechanism for nociceptive plasticity induced by growth factors, cytokines and nerve injury. Both male and female mice developed dose-dependent mechanical hypersensitivity in response to ephrin-B2, and both sexes showed hyperalgesic priming when challenged with PGE2 injection either to the paw or the cranial dura. Acute nociceptive behaviors and hyperalgesic priming were blocked in mice lacking MNK1 (Mknk1 knockout mice) and by eFT508, a specific MNK inhibitor. Sensory neuron-specific knockout of EphB2 using Pirt-Cre demonstrated that ephrin-B2 actions require this receptor. In Ca2+-imaging experiments on cultured DRG neurons, ephrin-B2 treatment enhanced Ca2+ transients in response to PGE2 and these effects were absent in DRG neurons from MNK1-/- and EphB2-PirtCre mice. In experiments on human DRG neurons, ephrin-B2 increased eIF4E phosphorylation and enhanced Ca2+ responses to PGE2 treatment, both blocked by eFT508. We conclude that ephrin-B2 acts directly on mouse and human sensory neurons to induce nociceptor plasticity via MNK-eIF4E signaling, offering new insight into how ephrin-B signaling promotes pain.
Assuntos
Efrina-B2 , Fator de Iniciação 4E em Eucariotos , Hiperalgesia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor EphB2 , Transdução de Sinais , Animais , Hiperalgesia/metabolismo , Humanos , Masculino , Receptor EphB2/metabolismo , Receptor EphB2/genética , Feminino , Efrina-B2/metabolismo , Efrina-B2/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Camundongos , Nociceptividade/efeitos dos fármacos , Células Cultivadas , Nociceptores/metabolismoRESUMO
OBJECTIVE: The aim of this study was to evaluate whether elevating levels of enkephalin by inhibiting their degradation can attenuate stress-induced migraine-like behaviors in mice. BACKGROUND: Previous studies in animals have suggested the delta opioid receptor (DOR) as a novel migraine target. The primary endogenous ligands for DOR are enkephalins and their levels can be increased by pharmacological inhibition of enkephalinases; however, it is not clear whether enkephalinase inhibition can be efficacious in preclinical migraine models through activation of DOR or whether other opioid receptors might be involved. Further, it is not clear whether opioid receptors in the central nervous system are necessary for these effects. METHODS: This study used a model of repetitive restraint stress in mice that induces periorbital hypersensitivity and priming to the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg). Von Frey filaments were used to measure periorbital mechanical thresholds and grimace scores were evaluated by observing mouse facial features. Animals were treated with the dual enkephalinase inhibitor (DENKI) PL37. RESULTS: On day two post-stress, PL37 given to mice via either intravenous injection (10 mg/kg) or oral gavage (20 mg/kg) significantly attenuated stress-induced periorbital hypersensitivity and facial grimace responses. Additionally, both intravenous (10 mg/kg) and oral gavage (20 mg/kg) of PL37 prior to SNP (0.1 mg/kg) administration on day 14 post-stress significantly reduced SNP-induced facial hypersensitivity. Injection of the DOR antagonist naltrindole (0.1 mg/kg) but not the mu-opioid receptor antagonist CTAP (1 mg/kg) prior to PL37 treatment blocked the effects. Finally, pretreatment of mice with the peripherally restricted opioid receptor antagonist naloxone methiodide (5 mg/kg) blocked the effects of PL37. CONCLUSIONS: These data demonstrate that inhibiting enkephalinases, and thus protecting enkephalins from degradation, attenuates stress-induced migraine-like behavior via activation of peripheral DOR. Peripheral targeting of endogenous opioid signaling may be an effective therapeutic strategy for migraine.
Assuntos
Transtornos de Enxaqueca , Antagonistas de Entorpecentes , Camundongos , Animais , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta , Neprilisina , Encefalinas/metabolismo , Encefalinas/farmacologia , Receptores Opioides , Transtornos de Enxaqueca/tratamento farmacológicoRESUMO
The tetrameric capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) in mammals has evolved the capability to integrate pain signal arising from harmful temperature and chemical irritants. The four repetitions of TRPV1 subunits result in an ion channel with excellent pain sensitivity, allowing this ionotropic receptor to differentiate graded injuries. We manipulated the stoichiometry and relative steric coordination of capsaicin-bound structures at the molecular level to determine the rules by which the receptor codes pain across a broad range of intensities. By introducing capsaicin-insensitive S512F mutant subunits into the TRPV1 channel, we found that binding of the first ligand results in low but clear channel activation. Maximal agonist-induced activation is already apparent in tetramers harboring two or three wild-type TRPV1 subunits, which display comparable activity to wild-type tetramer. The non-vanilloid agonist 2-aminoethoxydiphenyl borate (2-APB) differs from that of capsaicin in the TRPV1 channel opening mechanism activating all S512F-mutated TRPV1 channels. Two or more wild-type TRPV1 subunits are also required for full anandamide-induced channel activation, a cannabinoid that shares overlapping binding-pocket to capsaicin. Our results demonstrate that the stoichiometry of TRPV1 activation is conserved for two types of agonists.
RESUMO
Mirror-image pain (MIP), which occurs along with complex regional pain syndrome, rheumatoid arthritis and chronic migraine, is characterized by increased pain sensitivity of healthy body regions other than the actual injured or inflamed sites. A high level of peripheral inflammation may activate central or peripheral glia, triggering mirror-image pain. However, which receptors mediate inflammatory signals to contribute glial activation remains unclear. Intraplantarly injecting mice with 5-hydroxytryptamine (5-HT) or acidic buffer (proton) caused only unilateral hyperalgesia, but co-injection of 5-HT/acid induced bilateral hyperalgesia (MIP). Blocking 5-HT3 or acid-sensing ion channel 3 (ASIC3) abolished satellite glial activation, inhibiting MIP. Interestingly, intraplantar administration of a 5-HT3 agonist induced MIP, and 5-HT3-mediated MIP can be reversed by a 5-HT3 antagonist or an ASIC3 blocker. Similar results were found using a ASIC3 agonist. Furthermore, 5-HT3 was observed to co-localize with ASIC3 in DRG neurons; 5-HT3 activation-induced an increase in intracellular calcium that was inhibited by an ASIC3 blocker and vice versa. A cross-talk between 5-HT3 and ASIC3 mediates satellite glial activation, thereby triggering mirror-image pain.