Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364546

RESUMO

The combined process of biochar (BC) and potassium ferrate (PF) offers a fascinating technique for efficient dewatering of digestate. However, the effects of BC/PF treatment on the dewaterability and mechanisms of FWD are still unknown. This study aimed to reveal the impact mechanisms of BC/PF treatment on digestate dewatering performance. Experimental results indicated that BC/PF treatment significantly enhanced the dewaterability of digestate, with the minimum specific resistance to filtration of (1.05 ± 0.02) × 1015 m·kg-1 and water content of 57.52 ± 0.51% being obtained at the concentrations of 0.018 g·g-1 total solid (TS) BC300 and 0.20 g·g-1 TS PF, which were 8.60% and 13.59% lower than PF treatment, respectively. BC/PF treatment proficiently reduced the fractal dimension, bound water content, apparent viscosity, and gel-like network structure strength of digestate, as well as increased the floc size and zeta potential of digestate. BC/PF treatment promoted the conversion of extracellular polymeric substances (EPS) fractions from inner EPS to soluble EPS, increased the fluorescence intensity of the dissolved compounds, and enhanced the hydrophobicity of proteins. Mechanisms investigations showed that BC/PF enhanced dewatering through non-reactive oxygen species pathways, i.e., via strong oxidative intermediate irons species Fe(V)/Fe(IV). BC/PF treatment enhanced the solubilization of nutrients, the inactivation of fecal coliforms, and the mitigation of heavy metal toxicity. The results suggested that BC/PF treatment is an effective digestate dewatering technology which can provide technological supports to the closed-loop treatment of FWD.


Assuntos
Carvão Vegetal , Perda e Desperdício de Alimentos , Compostos de Ferro , Ferro , Compostos de Potássio , Eliminação de Resíduos , Alimentos , Esgotos/química , Água/química , Eliminação de Resíduos Líquidos/métodos
2.
Bioresour Technol ; 406: 130987, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885724

RESUMO

Biochar has been proved to improve methane production in high solids anaerobic co-digestion (HS-AcoD) of dewatered sludge (DS) and food waste (FW), but its potential mechanism for simultaneous methane production and phosphorus (P) transformation has not been sufficiently revealed. Results showed that the optimal preparation temperature and dosage of sludge-based biochar were selected as 300 °C and 0.075 g·g-1, respectively. Under this optimized condition, the methane production of the semi-continuous reactor increased by 54%, and the active phosphorus increased by 18%. The functional microorganisms, such as Methanosarcina, hydrogen-producing, sulfate-reducing, and iron-reducing bacteria, were increased. Metabolic pathways associated with sulfate reduction and methanogenesis, especially hydrogenotrophic methanogenesis, were enhanced, which in turn promoted methanogenesis and phosphorus transformation and release. This study provides theoretical support for simultaneously recovery of carbon and phosphorus resources from DS and FW using biochar.

3.
Sci Total Environ ; 842: 156882, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753448

RESUMO

Inadequate mixing has been proven to be a major cause of anaerobic digester failure. This study revealed the mechanism of mixing intervals on high-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and sewage sludge (SS). Optimized intermittent mixing time (15 min/h) was determined through computational fluid dynamics (CFD) simulation. Experimental results indicated that the simulated intermittent mixing could shorten digestion time and increase cumulative methane output (366.8 mL/gVS) compared with continuous mixing and unmixing. Mixing could considerably accelerate substrate solubilization and hydrolysis. Maximum rates of acidogenesis (53.35 %) and methanogenesis (49.41 %) were observed with an optimized intermittent mixing (15 min/h). Vigorous mixing induced apoptosis and disrupted syntrophic metabolism, whereas intermittent mixing promoted the syntrophic metabolism between Syntrophomonas and Methanobacterium, and led to an enrichment of genes involved in acidogenic and methanogenic pathways. These findings have important implications for the development of an optimized intermittent mixing strategy for maximizing HS-AcoD efficiency of FW and SS.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Digestão , Alimentos , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA