Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Dev Biol ; 514: 28-36, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880277

RESUMO

Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.

2.
Nucleic Acids Res ; 51(5): 2397-2414, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36744439

RESUMO

The intestinal epithelial regeneration is driven by intestinal stem cells under homeostatic conditions. Differentiated intestinal epithelial cells, such as Paneth cells, are capable of acquiring multipotency and contributing to regeneration upon the loss of intestinal stem cells. Paneth cells also support intestinal stem cell survival and regeneration. We report here that depletion of an RNA-binding protein named polypyrimidine tract binding protein 1 (PTBP1) in mouse intestinal epithelial cells causes intestinal stem cell death and epithelial regeneration failure. Mechanistically, we show that PTBP1 inhibits neuronal-like splicing programs in intestinal crypt cells, which is critical for maintaining intestinal stem cell stemness. This function is achieved at least in part through promoting the non-productive splicing of its paralog PTBP2. Moreover, PTBP1 inhibits the expression of an AKT inhibitor PHLDA3 in Paneth cells and permits AKT activation, which presumably maintains Paneth cell plasticity and function in supporting intestinal stem cell niche. We show that PTBP1 directly binds to a CU-rich region in the 3' UTR of Phlda3, which we demonstrate to be critical for downregulating the mRNA and protein levels of Phlda3. Our results thus reveal the multifaceted in vivo regulation of intestinal epithelial regeneration by PTBP1 at the post-transcriptional level.


Assuntos
Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Diferenciação Celular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/genética , Splicing de RNA
3.
Development ; 146(8)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30910828

RESUMO

In most species, early germline development occurs in the absence of transcription with germline determinants subject to complex translational and post-translational regulations. Here, we report for the first time that early germline development is influenced by dynamic regulation of the proteasome system, previously thought to be ubiquitously expressed and to serve 'housekeeping' roles in controlling protein homeostasis. We show that proteasomes are present in a gradient with the highest levels in the animal hemisphere and extending into the vegetal hemisphere of Xenopus oocytes. This distribution changes dramatically during the oocyte-to-embryo transition, with proteasomes becoming enriched in and restricted to the animal hemisphere and therefore separated from vegetally localized germline determinants. We identify Dead-end1 (Dnd1), a master regulator of vertebrate germline development, as a novel substrate of the ubiquitin-independent proteasomes. In the oocyte, ubiquitin-independent proteasomal degradation acts together with translational repression to prevent premature accumulation of Dnd1 protein. In the embryo, artificially increasing ubiquitin-independent proteasomal degradation in the vegetal pole interferes with germline development. Our work thus reveals novel inhibitory functions and spatial regulation of the ubiquitin-independent proteasome during vertebrate germline development.


Assuntos
Células Germinativas/metabolismo , Ubiquitina/metabolismo , Animais , Citoplasma/metabolismo , Células Germinativas/citologia , Oócitos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
4.
PLoS Genet ; 13(3): e1006672, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28296893

RESUMO

The intestinal epithelium plays a critical role in host-microbe homeostasis by sensing gut microbes and subsequently initiating proper immune responses. During the neonatal stage, the intestinal epithelium is under immune repression, allowing the transition for newborns from a relatively sterile intra-uterine environment to one that is rich in foreign antigens. The mechanism underlying such immune repression remains largely unclear, but involves downregulation of IRAK1 (interleukin-1 receptor-associated kinase), an essential component of toll-like receptor-mediated NF-κB signaling. We report here that heterogeneous nuclear ribonucleoprotein I (hnRNPI), an RNA binding protein, is essential for regulating neonatal immune adaptation. We generated a mouse model in which hnRNPI is ablated specifically in the intestinal epithelial cells, and characterized intestinal defects in the knockout mice. We found that loss of hnRNPI function in mouse intestinal epithelial cells results in early onset of spontaneous colitis followed by development of invasive colorectal cancer. Strikingly, the epithelium-specific hnRNPI knockout neonates contain aberrantly high IRAK1 protein levels in the colons and fail to develop immune tolerance to environmental microbes. Our results demonstrate that hnRNPI plays a critical role in establishing neonatal immune adaptation and preventing colitis and colorectal cancer.


Assuntos
Imunidade Adaptativa/genética , Colite/genética , Neoplasias Colorretais/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Animais , Animais Recém-Nascidos , Western Blotting , Colite/metabolismo , Neoplasias Colorretais/metabolismo , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Development ; 143(21): 3944-3955, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633991

RESUMO

Hedgehog (Hh) signaling is fundamentally important for development and adult tissue homeostasis. It is well established that in vertebrates Sufu directly binds and inhibits Gli proteins, the downstream mediators of Hh signaling. However, it is unclear how the inhibitory function of Sufu towards Gli is regulated. Here we report that the Rusc family of proteins, the biological functions of which are poorly understood, form a heterotrimeric complex with Sufu and Gli. Upon Hh signaling, Rusc is displaced from this complex, followed by dissociation of Gli from Sufu. In mammalian fibroblast cells, knockdown of Rusc2 potentiates Hh signaling by accelerating signaling-induced dissociation of the Sufu-Gli protein complexes. In Xenopus embryos, knockdown of Rusc1 or overexpression of a dominant-negative Rusc enhances Hh signaling during eye development, leading to severe eye defects. Our study thus uncovers a novel regulatory mechanism controlling the response of cells to Hh signaling in vertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Família Multigênica , Células NIH 3T3 , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
6.
Development ; 143(21): 4085-4094, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697903

RESUMO

A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Optogenética/métodos , Fosfotransferases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Luz , Sistema de Sinalização das MAP Quinases , Células PC12 , Fosforilação , Fosfotransferases/genética , Ratos , Transdução de Sinais , Transgenes , Xenopus , Quinases raf/metabolismo
7.
Development ; 140(11): 2334-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23615278

RESUMO

Vertebrate axis specification is an evolutionarily conserved developmental process that relies on asymmetric activation of Wnt signaling and subsequent organizer formation on the future dorsal side of the embryo. Although roles of Wnt signaling during organizer formation have been studied extensively, it is unclear how the Wnt pathway is asymmetrically activated. In Xenopus and zebrafish, the Wnt pathway is triggered by dorsal determinants, which are translocated from the vegetal pole to the future dorsal side of the embryo shortly after fertilization. The transport of dorsal determinants requires a unique microtubule network formed in the vegetal cortex shortly after fertilization. However, molecular mechanisms governing the formation of vegetal cortical microtubule arrays are not fully understood. Here we report that Dead-End 1 (Dnd1), an RNA-binding protein required for primordial germ cell development during later stages of embryogenesis, is essential for Xenopus axis specification. We show that knockdown of maternal Dnd1 specifically interferes with the formation of vegetal cortical microtubules. This, in turn, impairs translocation of dorsal determinants, the initiation of Wnt signaling, organizer formation, and ultimately results in ventralized embryos. Furthermore, we found that Dnd1 binds to a uridine-rich sequence in the 3'-UTR of trim36, a vegetally localized maternal RNA essential for vegetal cortical microtubule assembly. Dnd1 anchors trim36 to the vegetal cortex in the egg, promoting high concentrations of Trim36 protein there. Our work thus demonstrates a novel and surprising function for Dnd1 during early development and provides an important link between Dnd1, mRNA localization, the microtubule cytoskeleton and axis specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Microtúbulos/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Regiões 3' não Traduzidas , Animais , Padronização Corporal , Proteínas de Transporte/metabolismo , Citoesqueleto/fisiologia , Embrião não Mamífero/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia Confocal , Regiões Promotoras Genéticas , Transdução de Sinais , Proteínas Wnt/metabolismo , Xenopus/genética , Proteínas de Xenopus/genética
8.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712275

RESUMO

Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.

9.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915624

RESUMO

Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics is controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.

10.
Biomedicines ; 11(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37893107

RESUMO

(1) Background: Knockout (KO) of heterogeneous nuclear ribonucleoprotein I (Hnrnp I) in mouse intestinal epithelial cells (IECs) induced a severe inflammatory response in the colon, followed by hyperproliferation. This study aimed to investigate the epithelial lineage dynamics and cell-cell communications that underlie inflammation and colitis. (2) Methods: Single cells were isolated from the colons of wildtype (WT) and KO mice and used in scRNA-seq. Whole colons were collected for immunofluorescence staining and cytokine assays. (3) Results: from scRNA-seq, the number of DCLK1 + colonic tuft cells was significantly higher in the Hnrnp I KO mice compared to the WT mice. This was confirmed by immunofluorescent staining of DCLK1. The DCLK1 + colonic tuft cells in KO mice developed unique communications with lymphocytes via interactions between surface L1 cell adhesion molecule (L1CAM) and integrins. In the KO mice colons, a significantly elevated level of inflammatory cytokines IL4, IL6, and IL13 were observed, which marks type-2 immune responses directed by group 2 innate lymphoid cells (ILC2s). (4) Conclusions: This study demonstrates one critical cellular function of colonic tuft cells, which facilitates type-2 immune responses by communicating with ILC2s via the L1CAM-integrins interaction. This communication promotes pro-inflammatory signaling pathways in ILC2, leading to the increased secretion of inflammatory cytokines.

11.
J Nutr Biochem ; 119: 109406, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394079

RESUMO

Heterogeneous nuclear ribonucleoprotein I (HNRNP I) is an RNA-binding protein essential for neonatal immune adaptation by downregulating interleukin-1 receptor-associated kinase (IRAK1) in toll-like receptor (TLR)-mediated NF-κB signaling pathways. TLR-mediated NF-κB is associated with chronic inflammation, including the development of inflammatory bowel diseases. Meanwhile, dietary protein intake is one of the major concerns for individuals with inflammatory bowel diseases. The present study aims to investigate the effects of a protein-enriched diet on intestinal inflammation and immune responses in a mouse model with aberrant NF-κB signaling in the colon. A transgenic mouse model with intestinal-epithelial-cell (IEC) specific Hnrnp I knocked out was used to investigate the effects of protein intake on the immune system in the colon. A control diet (CON) and a nutrient-dense modified diet (MOD) were fed to both the wild-type (WT) and the knockout (KO) male mice for 14 weeks. Inflammatory markers and colonic immune responses were examined, with gene expression and protein expression levels analyzed. IEC-specific Hnrnp I knocked out mice had significantly increased expression of the active NF-κB subunit, P65, in their colons. There was a concomitant induction of mRNA expression of Il1ß, Il6, Cxcl1, and Ccl2. The number of CD4+ T cells in the distal colon was also increased in the KO mice. The results confirmed that KO mice had proinflammatory responses with aberrant NF-κB signaling in the colon. Importantly, increased nutrient density in their diets attenuated colon inflammation by decreasing the expression of proinflammatory cytokines, reducing P65 translocation, downregulating IRAK1, and limiting the number of CD4+ T cells recruited in Hnrnp I KO mice colon. In summary, this study found that a diet with increased nutrient density relieved the inflammation induced by knockout of Hnrnp I, attributable partially to the reduced expression of inflammatory and immune-modulating cytokines in the mouse distal colon.


Assuntos
Doenças Inflamatórias Intestinais , NF-kappa B , Masculino , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Camundongos Knockout , Proteínas Alimentares , Inflamação/genética , Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Citocinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Dieta
12.
Dev Cell ; 58(23): 2776-2788.e5, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37922909

RESUMO

The oocyte-to-embryo transition (OET) is regulated by maternal products stored in the oocyte cytoplasm, independent of transcription. How maternal products are precisely remodeled to dictate the OET remains largely unclear. In this work, we discover the dynamic solubility phase transition of maternal RNAs during Xenopus OET. We have identified 863 maternal transcripts that transition from a soluble state to a detergent-insoluble one after oocyte maturation. These RNAs are enriched in the animal hemisphere, and many of them encode key cell cycle regulators. In contrast, 165 transcripts, including nearly all Xenopus germline RNAs and some vegetally localized somatic RNAs, undergo an insoluble-to-soluble phase transition. This phenomenon is conserved in zebrafish. Our results demonstrate that the phase transition of germline RNAs influences their susceptibility to RNA degradation machinery and is mediated by the remodeling of germ plasm. This work thus identifies important remodeling mechanisms that act on RNAs to control vertebrate OET.


Assuntos
Oócitos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Solubilidade , Oócitos/metabolismo , RNA/metabolismo , Células Germinativas/metabolismo
13.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214813

RESUMO

The oocyte-to-embryo transition (OET) is regulated by maternal products stored in the oocyte cytoplasm, independent of transcription. How maternal products are precisely remodeled to dictate the OET remains an open question. In this work, we discover the dynamic phase transition of maternal RNAs during Xenopus OET. We have identified 863 maternal transcripts that transition from a soluble state to a detergent-insoluble one after oocyte maturation. These RNAs are enriched in the animal hemisphere and many of them encode key cell cycle regulators. In contrast, 165 transcripts, including nearly all Xenopus germline RNAs and some vegetally localized somatic RNAs, undergo an insoluble-to-soluble phase transition. This phenomenon is conserved in zebrafish. Our results demonstrate that the phase transition of germline RNAs influences their susceptibility to RNA degradation machinery and is mediated by the remodeling of germ plasm. This work thus uncovers novel remodeling mechanisms that act on RNAs to regulate vertebrate OET.

14.
Nat Commun ; 14(1): 5215, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626026

RESUMO

Chemical imaging, especially mid-infrared spectroscopic microscopy, enables label-free biomedical analyses while achieving expansive molecular sensitivity. However, its slow speed and poor image quality impede widespread adoption. We present a microscope that provides high-throughput recording, low noise, and high spatial resolution where the bottom-up design of its optical train facilitates dual-axis galvo laser scanning of a diffraction-limited focal point over large areas using custom, compound, infinity-corrected refractive objectives. We demonstrate whole-slide, speckle-free imaging in ~3 min per discrete wavelength at 10× magnification (2 µm/pixel) and high-resolution capability with its 20× counterpart (1 µm/pixel), both offering spatial quality at theoretical limits while maintaining high signal-to-noise ratios (>100:1). The data quality enables applications of modern machine learning and capabilities not previously feasible - 3D reconstructions using serial sections, comprehensive assessments of whole model organisms, and histological assessments of disease in time comparable to clinical workflows. Distinct from conventional approaches that focus on morphological investigations or immunostaining techniques, this development makes label-free imaging of minimally processed tissue practical.


Assuntos
Cultura , Procedimentos de Cirurgia Plástica , Microscopia Confocal , Confiabilidade dos Dados , Aprendizado de Máquina
15.
J Biol Chem ; 286(42): 36171-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878643

RESUMO

The Hedgehog (Hh) pathway is evolutionarily conserved and plays critical roles during embryonic development and adult tissue homeostasis. Defective Hh signaling has been linked to a wide range of birth defects and cancers. Hh family proteins regulate the expression of their downstream target genes through the control of proteolytic processing and the transcriptional activation function of Gli transcription factors. Although Hh-dependent regulation of Gli has been studied extensively, other Gli regulatory mechanisms remain relatively unappreciated. Here we report our identification of a novel signaling cascade that controls the stability of Gli proteins. This cascade consists of Daz interacting protein 1 (Dzip1), casein kinase 2 (CK2), and B56 containing protein phosphatase 2As (PP2As). We provide evidence that Dzip1 is involved in a novel Gli turnover pathway. We show that CK2 directly phosphorylates Dzip1 at four serine residues, Ser-664/665/706/714. B56-containing PP2As, through binding to a domain located between amino acid residue 474 and 550 of Dzip1, dephosphorylate Dzip1 on these CK2 sites. Our mutagenesis analysis further demonstrates that the unphosphorylatable form of Dzip1 is more potent in promoting Gli turnover. Consistently, we found that the stability of Gli proteins was decreased upon CK2 inhibition and increased by inhibition of B56-containing PP2As. Thus, reversible phosphorylation of Dzip1, which is controlled by the antagonistic action of CK2 and B56-containing PP2As, has an important impact on the stability of Gli transcription factors and Hh signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Fosfatase 2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caseína Quinase II/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Mutagênese , Células NIH 3T3 , Fosforilação/fisiologia , Proteína Fosfatase 2/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Xenopus laevis , Proteína GLI1 em Dedos de Zinco
16.
Development ; 136(17): 3007-17, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19666827

RESUMO

Egg activation is an important cellular event required to prevent polyspermy and initiate development of the zygote. Egg activation in all animals examined is elicited by a rise in free Ca(2+) in the egg cytosol at fertilization. This Ca(2+) rise is crucial for all subsequent egg activation steps, such as cortical granule exocytosis, which modifies the vitelline membrane to prevent polyspermy. The cytosolic Ca(2+) rise is primarily initiated by inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the endoplasmic reticulum. The genes involved in regulating the IP(3)-mediated Ca(2+) release during egg activation remain largely unknown. Here we report on a zebrafish maternal-effect mutant, brom bones, which is defective in the cytosolic Ca(2+) rise and subsequent egg activation events, including cortical granule exocytosis and cytoplasmic segregation. We show that the egg activation defects in brom bones can be rescued by providing Ca(2+) or the Ca(2+)-release messenger IP(3), suggesting that brom bones is a regulator of IP(3)-mediated Ca(2+) release at fertilization. Interestingly, brom bones mutant embryos also display defects in dorsoventral axis formation accompanied by a disorganized cortical microtubule network, which is known to be crucial for dorsal axis formation. We provide evidence that the impaired microtubule organization is associated with non-exocytosed cortical granules from the earlier egg activation defect. Positional cloning of the brom bones gene reveals that a premature stop codon in the gene encoding hnRNP I (referred to here as hnrnp I) underlies the abnormalities. Our studies therefore reveal an important new role of hnrnp I in regulating the fundamental process of IP(3)-mediated Ca(2+) release at egg activation.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Oócitos/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Sequência de Aminoácidos , Animais , Retículo Endoplasmático/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Oócitos/citologia , Fenótipo , Alinhamento de Sequência , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
17.
Ann Neurol ; 69(3): 540-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21446026

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is associated with D4Z4 repeat contraction on human chromosome 4q35. This genetic lesion does not result in complete loss or mutation of any gene. Consequently, the pathogenic mechanisms underlying FSHD have been difficult to discern. In leading FSHD pathogenesis models, D4Z4 contractions are proposed to cause epigenetic changes, which ultimately increase expression of genes with myopathic potential. Although no gene has been conclusively linked to FSHD development, recent evidence supports a role for the D4Z4-encoded DUX4 gene in FSHD. In this study, our objective was to test the in vivo myopathic potential of DUX4. METHODS: We delivered DUX4 to zebrafish and mouse muscle by transposon-mediated transgenesis and adeno-associated viral vectors, respectively. RESULTS: Overexpression of DUX4, which encodes a transcription factor, caused abnormalities associated with muscular dystrophy in zebrafish and mice. This toxicity required DNA binding, because a DUX4 DNA binding domain mutant produced no abnormalities. Importantly, we found the myopathic effects of DUX4 were p53 dependent, as p53 inhibition mitigated DUX4 toxicity in vitro, and muscles from p53 null mice were resistant to DUX4-induced damage. INTERPRETATION: Our work demonstrates the myopathic potential of DUX4 in animal muscle. Considering previous studies showed DUX4 was elevated in FSHD patient muscles, our data support the hypothesis that DUX4 overexpression contributes to FSHD development. Moreover, we provide a p53-dependent mechanism for DUX4 toxicity that is consistent with previous studies showing p53 pathway activation in FSHD muscles. Our work justifies further investigation of DUX4 and the p53 pathway in FSHD pathogenesis.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Doenças Musculares/genética , Proteína Supressora de Tumor p53/genética , Animais , Feminino , Técnicas de Transferência de Genes , Força da Mão/fisiologia , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra
18.
PLoS Genet ; 5(2): e1000363, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19197356

RESUMO

Regulated intestinal stem cell proliferation and differentiation are required for normal intestinal homeostasis and repair after injury. The Notch signaling pathway plays fundamental roles in the intestinal epithelium. Despite the fact that Notch signaling maintains intestinal stem cells in a proliferative state and promotes absorptive cell differentiation in most species, it remains largely unclear how Notch signaling itself is precisely controlled during intestinal homeostasis. We characterized the intestinal phenotypes of brom bones, a zebrafish mutant carrying a nonsense mutation in hnRNP I. We found that the brom bones mutant displays a number of intestinal defects, including compromised secretory goblet cell differentiation, hyperproliferation, and enhanced apoptosis. These phenotypes are accompanied by a markedly elevated Notch signaling activity in the intestinal epithelium. When overexpressed, hnRNP I destabilizes the Notch intracellular domain (NICD) and inhibits Notch signaling. This activity of hnRNP I is conserved from zebrafish to human. In addition, our biochemistry experiments demonstrate that the effect of hnRNP I on NICD turnover requires the C-terminal portion of the RAM domain of NICD. Our results demonstrate that hnRNP I is an evolutionarily conserved Notch inhibitor and plays an essential role in intestinal homeostasis.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Mucosa Intestinal/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Mucosa Intestinal/citologia , Intestinos/citologia , Camundongos , Oócitos/metabolismo , Xenopus laevis , Peixe-Zebra/metabolismo
19.
Cell Rep ; 41(11): 111802, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516762

RESUMO

Asymmetric localization of mRNAs is crucial for cell polarity and cell fate determination. By performing fractionation RNA-seq, we report here that a large number of maternal RNAs are associated with the ER in Xenopus oocytes but are released into the cytosol after oocyte maturation. We provide evidence that the majority of ER-associated RNA-binding proteins (RBPs) remain associated with the ER after oocyte maturation. However, all ER-associated RBPs analyzed exhibit reduced binding to some of their target RNAs after oocyte maturation. Our results further show that the ER is remodeled massively during oocyte maturation, leading to the formation of a widespread tubular ER network in the animal hemisphere that is required for the asymmetric localization of mRNAs in mature eggs. Thus, our findings demonstrate that dynamic regulation of RNA-ER association and remodeling of the ER are important for the asymmetric localization of RNAs during development.


Assuntos
Oócitos , RNA , Animais , Oócitos/metabolismo , RNA/metabolismo , Oogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polaridade Celular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Sci Rep ; 10(1): 18788, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139756

RESUMO

Di-isononyl phthalate (DiNP), a common plasticizer used in polyvinyl chloride products, exhibits endocrine-disrupting capabilities. It is also toxic to the brain, reproductive system, liver, and kidney. However, little is known about how DiNP impacts the gastrointestinal tract (GIT). It is crucial to understand how DiNP exposure affects the GIT because humans are primarily exposed to DiNP through the GIT. Thus, this study tested the hypothesis that subacute exposure to DiNP dysregulates cellular, endocrine, and immunological aspects in the colon of adult female mice. To test this hypothesis, adult female mice were dosed with vehicle control or DiNP doses ranging from 0.02 to 200 mg/kg for 10-14 days. After the treatment period, mice were euthanized during diestrus, and colon tissue samples were subjected to morphological, biochemical, and hormone assays. DiNP exposure significantly increased histological damage in the colon compared to control. Exposure to DiNP also significantly decreased sICAM-1 levels, increased Tnf expression, decreased a cell cycle regulator (Ccnb1), and increased apoptotic factors (Aifm1 and Bcl2l10) in the colon compared to control. Colon-extracted lipids revealed that DiNP exposure significantly decreased estradiol levels compared to control. Collectively, these data indicate that subacute exposure to DiNP alters colon morphology and physiology in adult female mice.


Assuntos
Colo/imunologia , Colo/metabolismo , Disruptores Endócrinos/efeitos adversos , Ácidos Ftálicos/efeitos adversos , Plastificantes/efeitos adversos , Animais , Apoptose/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular/genética , Colo/efeitos dos fármacos , Colo/patologia , Ciclina B1/metabolismo , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Feminino , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Ácidos Ftálicos/administração & dosagem , Ácidos Ftálicos/toxicidade , Plastificantes/administração & dosagem , Plastificantes/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA