Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(5): 1112-1115, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857226

RESUMO

We demonstrate an active carrier-envelope phase (CEP) stabilization scheme for optical waveforms generated by difference-frequency mixing of two spectrally detuned and phase-correlated pulses. By performing ellipsometry with spectrally overlapping parts of two co-propagating near-infrared generation pulse trains, we stabilize their relative timing to 18 as. Consequently, we can lock the CEP of the generated mid-infrared (MIR) pulses with a remaining phase jitter below 30 mrad. To validate this technique, we employ these MIR pulses for high-harmonic generation in a bulk semiconductor. Our compact, low-cost, and inherently drift-free concept could bring long-term CEP stability to the broad class of passively phase-locked OPA and OPCPA systems operating in a wide range of spectral windows, pulse energies, and repetition rates.

2.
Phys Rev Lett ; 127(13): 133603, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623836

RESUMO

A single quantum emitter can possess a very strong intrinsic nonlinearity, but its overall promise for nonlinear effects is hampered by the challenge of efficient coupling to incident photons. Common nonlinear optical materials, on the other hand, are easy to couple to but are bulky, imposing a severe limitation on the miniaturization of photonic systems. In this Letter, we show that a single organic molecule acts as an extremely efficient nonlinear optical element in the strong coupling regime of cavity quantum electrodynamics. We report on single-photon sensitivity in nonlinear signal generation and all-optical switching. Our work promotes the use of molecules for applications such as integrated photonic circuits operating at very low powers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA