Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Ther ; 22(4): 881-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24370701

RESUMO

An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8(+) T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections.


Assuntos
Hepacivirus/genética , Hepatite C/genética , Hepatite C/prevenção & controle , Vacinas/uso terapêutico , Animais , Vetores Genéticos/uso terapêutico , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Imunidade Ativa/genética , Camundongos , Vírus da Floresta de Semliki/genética , Linfócitos T/imunologia , Vacinas/genética , Vacinas/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/uso terapêutico
2.
J Gen Virol ; 91(Pt 2): 389-93, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19828760

RESUMO

Flaviviruses infect their host cells by a membrane fusion reaction. In this study, we performed a functional analysis of the membrane fusion properties of West Nile virus (WNV) with liposomal target membranes. Membrane fusion was monitored continuously using a lipid mixing assay involving the fluorophore, pyrene. Fusion of WNV with liposomes occurred on the timescale of seconds and was strictly dependent on mildly acidic pH. Optimal fusion kinetics were observed at pH 6.3, the threshold for fusion being pH 6.9. Preincubation of the virus alone at pH 6.3 resulted in a rapid loss of fusion capacity. WNV fusion activity is strongly promoted by the presence of cholesterol in the target membrane. Furthermore, we provide direct evidence that cleavage of prM to M is a requirement for fusion activity of WNV.


Assuntos
Fusão de Membrana , Febre do Nilo Ocidental/fisiopatologia , Vírus do Nilo Ocidental/fisiologia , Animais , Cricetinae , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/química
3.
Immun Inflamm Dis ; 8(3): 279-291, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32319216

RESUMO

INTRODUCTION: Cotton rats are a suitable model for the study of influenza disease symptoms and responses to influenza vaccination. We have previously shown that two immunizations with 15 µg whole inactivated virus (WIV) influenza vaccine could completely protect animals from infection with the H1N1pdm09 virus. METHODS: To further explore the cotton rat model, we here investigated the protective potential of a single intramuscular immunization and of prime/boost intramuscular immunizations with a low amount of antigen. RESULTS: A single intramuscular immunization with doses more than or equal to 0.5 µg WIV reliably evoked antibody responses and doses more than or equal to 1 µg protected the animals from virus replication in the lungs and from severe weight loss. However, clinical symptoms like an increased respiration rate were still apparent. Administration of a booster dose significantly increased the humoral immune responses but did not or only moderately improved protection from clinical symptoms. CONCLUSION: Our data suggest that complete and partial protection by influenza vaccines can be mimicked in cotton rats by using specific vaccination regimens.


Assuntos
Imunidade Humoral , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Sigmodontinae , Vacinação , Vacinas de Produtos Inativados
4.
Front Immunol ; 10: 646, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984200

RESUMO

Adjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus. In general, intranasal immunizations were significantly more effective than intramuscular immunizations in inducing virus-specific serum-IgG, mucosal-IgA, and splenic IFNγ-producing CD4 T cells. Intranasal immunizations with adjuvanted vaccines afforded strong cross-protection with milder clinical symptoms and better control of virus load in lungs. Mechanistic studies indicated that non-neutralizing IgG antibodies and CD4 T cells were responsible for the improved cross-protection while IgA antibodies were dispensable. The role of CD4 T cells was particularly pronounced for CTA1-3M2e-DD adjuvanted vaccine as evidenced by CD4 T cell-dependent reduction of lung virus titers and clinical symptoms. Thus, intranasally administered WIV in combination with effective mucosal adjuvants appears to be a promising broadly protective influenza vaccine candidate.


Assuntos
Adjuvantes Imunológicos , Proteção Cruzada , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/prevenção & controle , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Administração Intranasal , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Feminino , Imunoglobulina G/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia
5.
Front Immunol ; 10: 2476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749796

RESUMO

Innate immunity is critical in the early containment of influenza A virus (IAV) infection and surfactant protein D (SP-D) plays a crucial role in innate defense against IAV in the lungs. Multivalent lectin-mediated interactions of SP-D with IAVs result in viral aggregation, reduced epithelial infection, and enhanced IAV clearance by phagocytic cells. Previous studies showed that porcine SP-D (pSP-D) exhibits distinct antiviral activity against IAV as compared to human SP-D (hSP-D), mainly due to key residues in the lectin domain of pSP-D that contribute to its profound neutralizing activity. These observations provided the basis for the design of a full-length recombinant mutant form of hSP-D, designated as "improved SP-D" (iSP-D). Inspired by pSP-D, the lectin domain of iSP-D has 5 amino acids replaced (Asp324Asn, Asp330Asn, Val251Glu, Lys287Gln, Glu289Lys) and 3 amino acids inserted (326Gly-Ser-Ser). Characterization of iSP-D revealed no major differences in protein assembly and saccharide binding selectivity as compared to hSP-D. However, hemagglutination inhibition measurements showed that iSP-D expressed strongly enhanced activity compared to hSP-D against 31 different IAV strains tested, including (pandemic) IAVs that were resistant for neutralization by hSP-D. Furthermore, iSP-D showed increased viral aggregation and enhanced protection of MDCK cells against infection by IAV. Importantly, prophylactic or therapeutic application of iSP-D decreased weight loss and reduced viral lung titers in a murine model of IAV infection using a clinical isolate of H1N1pdm09 virus. These studies demonstrate the potential of iSP-D as a novel human-based antiviral inhalation drug that may provide immediate protection against or recovery from respiratory (pandemic) IAV infections in humans.


Assuntos
Carboidratos , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteína D Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/metabolismo , Sítios de Ligação , Carboidratos/imunologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Glicosilação , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteínas Recombinantes , Relação Estrutura-Atividade
6.
Biotechnol J ; 13(4): e1700645, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29278302

RESUMO

Induction of CD8+ cytotoxic T cells (CTLs) to conserved internal influenza antigens, such as nucleoprotein (NP), is a promising strategy for the development of cross-protective influenza vaccines. However, influenza NP protein alone cannot induce CTL immunity due to its low capacity to activate antigen-presenting cells (APCs) and get access to the MHC class I antigen processing pathway. To facilitate the generation of NP-specific CTL immunity the authors develop a novel influenza vaccine consisting of virosomes with the Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) and the metal-ion-chelating lipid DOGS-NTA-Ni incorporated in the membrane. In vitro, virosomes with incorporated MPLA induce stronger activation of APCs than unadjuvanted virosomes. Virosomes modified with DOGS-NTA-Ni show high conjugation efficacy for his-tagged proteins and facilitate efficient uptake of conjugated proteins by APCs. Immunization of mice with MPLA-adjuvanted virosomes with attached NP results in priming of NP-specific CTLs while MPLA-adjuvanted virosomes with admixed NP are inefficient in priming CTLs. Both vaccines induce equally high titers of NP-specific antibodies. When challenged with heterosubtypic influenza virus, mice immunized with virosomes with attached or admixed NP are protected from severe weight loss. Yet, unexpectedly, they show more weight loss and more severe disease symptoms than mice immunized with MPLA-virosomes without NP. Taken together, these results indicate that virosomes with conjugated antigen and adjuvant incorporated in the membrane are effective in priming of CTLs and eliciting antigen-specific antibody responses in vivo. However, for protection from influenza infection NP-specific immunity appears not to be advantageous.


Assuntos
Adjuvantes Imunológicos/química , Lipídeo A/análogos & derivados , Proteínas de Ligação a RNA/imunologia , Proteínas do Core Viral/imunologia , Virossomos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Vacinas contra Influenza/imunologia , Lipídeo A/química , Camundongos , Níquel/química , Proteínas do Nucleocapsídeo , Células RAW 264.7 , Linfócitos T Citotóxicos/metabolismo , Virossomos/química
7.
Virology ; 515: 21-28, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223787

RESUMO

Current influenza vaccines mainly induce antibody responses to the variable hemagglutinin proteins of the virus strains included in the vaccine. Instead, a broadly protective influenza vaccine should aim at inducing antibody- and/or cell-mediated immunity against conserved viral proteins. Vacc-FLU is a peptide based vaccine combining conserved B and T cell epitopes. Peptide selection was done using a proprietary peptide design platform technology focusing on responses to human leukocyte antigen (HLA)-restricted epitopes. Immunization of wild-type mice and mice transgenic for HLA-A2.1 with the peptide mix successfully induced both humoral and cell mediated immune responses. Partial protection from severe weight loss upon challenge was observed in both mouse strains but was stronger and observed at lower vaccine doses in transgenic mice. Our results show that the Vacc-FLU peptide mix is capable of inducing IFNγ-producing T cells and antibody-producing B cells which can protect from severe disease symptoms upon infection.


Assuntos
Imunidade Celular , Imunidade Humoral , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Peptídeos/imunologia , Animais , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-A2 , Humanos , Imunização , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória
8.
Front Immunol ; 9: 2312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356772

RESUMO

Sequential infection with antigenically distinct influenza viruses induces cross-protective immune responses against heterologous virus strains in animal models. Here we investigated whether sequential immunization with antigenically distinct influenza vaccines can also provide cross-protection. To this end, we compared immune responses and protective potential against challenge with A(H1N1)pdm09 in mice infected sequentially with seasonal A(H1N1) virus followed by A(H3N2) virus or immunized sequentially with whole inactivated virus (WIV) or subunit (SU) vaccine derived from these viruses. Sequential infection provided solid cross-protection against A(H1N1)pdm09 infection while sequential vaccination with WIV, though not capable of preventing weight loss upon infection completely, protected the mice from reaching the humane endpoint. In contrast, sequential SU vaccination did not prevent rapid and extensive weight loss. Protection correlated with levels of cross-reactive but non-neutralizing antibodies of the IgG2a subclass, general increase of memory T cells and induction of influenza-specific CD4+ and CD8+ T cells. Adoptive serum transfer experiments revealed that despite lacking neutralizing activity, serum antibodies induced by sequential infection protected mice from weight loss and vigorous virus growth in the lungs upon A(H1N1)pdm09 virus challenge. Antibodies induced by WIV vaccination alleviated symptoms but could not control virus growth in the lung. Depletion of T cells prior to challenge revealed that CD8+ T cells, but not CD4+ T cells, contributed to cross-protection. These results imply that sequential immunization with WIV but not SU derived from antigenically distinct viruses could alleviate the severity of infection caused by a pandemic and may improve protection to unpredictable seasonal infection.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunização , Memória Imunológica , Camundongos , Especificidade de Órgãos/imunologia , Especificidade da Espécie , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Vaccines (Basel) ; 5(3)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749414

RESUMO

Adjuvants are key components in vaccines, they help in reducing the required antigen dose but also modulate the phenotype of the induced immune response. We previously showed that GPI-0100, a saponin-derived adjuvant, enhances antigen-specific mucosal and systemic antibody responses to influenza subunit and whole inactivated influenza virus (WIV) vaccine administered via the pulmonary route. However, the impact of the GPI-0100 dose on immune stimulation and the immune mechanisms stimulated by GPI-0100 along with antigen are poorly understood. Therefore, in this study we immunized C57BL/6 mice via the pulmonary route with vaccine consisting of WIV combined with increasing amounts of GPI-0100, formulated as a dry powder. Adjuvantation of WIV enhanced influenza-specific mucosal and systemic immune responses, with intermediate doses of 5 and 7.5 µg GPI-0100 being most effective. The predominant antibody subtype induced by GPI-0100-adjuvanted vaccine was IgG1. Compared to non-adjuvanted vaccine, GPI-0100-adjuvanted WIV vaccine gave rise to higher numbers of antigen-specific IgA- but not IgG-producing B cells in the lungs along with better mucosal and systemic memory B cell responses. The GPI-0100 dose was negatively correlated with the number of influenza-specific IFNγ- and IL17-producing T cells and positively correlated with the number of IL4-producing T cells observed after immunization and challenge. Overall, our results show that adjuvantation of pulmonary-delivered WIV with GPI-0100 mostly affects B cell responses and effectively induces B cell memory.

10.
Oncoimmunology ; 4(3): e989764, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25949902

RESUMO

The high efficacy of therapeutic cancer vaccines in preclinical studies has yet to be fully achieved in clinical trials. Tumor immune suppression is a critical factor that hampers the desired antitumor effect. Here, we analyzed the combined effect of a cancer vaccine and the receptor tyrosine kinase inhibitor sunitinib. Sunitinib was administered intraperitoneally, alone or in combination with intramuscular immunization using a viral vector based cancer vaccine composed of Semliki Forest virus replicon particles and encoding the oncoproteins E6 and E7 (SFVeE6,7) of human papilloma virus (HPV). We first demonstrated that treatment of tumor-bearing mice with sunitinib alone dose-dependently depleted myeloid-derived suppressor cells (MDSCs) in the tumor, spleen and in circulation. Concomitantly, the number of CD8+ T cells increased 2-fold and, on the basis of CD69 expression, their activation status was greatly enhanced. The intrinsic immunosuppressive activity of residual MDSCs after sunitinib treatment was not changed in a dose-dependent fashion. We next combined sunitinib treatment with SFVeE6,7 immunization. This combined treatment resulted in a 1.5- and 3-fold increase of E7-specific cytotoxic T lymphocytes (CTLs) present within the circulation and tumor, respectively, as compared to immunization only. The ratio of E7-specific CTLs to MDSCs in blood thereby increased 10- to 20-fold and in tumors up to 12.5-fold. As a result, the combined treatment strongly enhanced the antitumor effect of the cancer vaccine. This study demonstrates that sunitinib creates a favorable microenvironment depleted of MDSCs and acts synergistically with a cancer vaccine resulting in enhanced levels of active tumor-antigen specific CTLs, thus changing the balance in favor of antitumor immunity.

11.
Vaccines (Basel) ; 3(2): 221-38, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26343186

RESUMO

The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

12.
Eur J Pharm Biopharm ; 93: 231-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25896446

RESUMO

Stable vaccines administered to the lungs by inhalation could circumvent many of the problems associated with current immunizations against respiratory infections. We earlier provided proof of concept in mice that pulmonary delivered whole inactivated virus (WIV) influenza vaccine formulated as a stable dry powder effectively elicits influenza-specific antibodies in lung and serum. Yet, mucosal IgA, considered particularly important for protection at the site of virus entry, was poorly induced. Here we investigate the suitability of various Toll-like receptor (TLR) ligands and the saponin-derived compound GPI-0100 to serve as adjuvant for influenza vaccine administered to the lungs as dry powder. The TLR ligands palmitoyl-3-cysteine-serine-lysine-4 (Pam3CSK4), monophosphoryl lipid A (MPLA) and CpG oligodeoxynucleotides (CpG ODN) as well as GPI-0100 tolerated the process of spray freeze-drying well. While Pam3CSK4 had no effect on systemic antibody titers, all the other adjuvants significantly increased influenza-specific serum and lung IgG titers. Yet, only GPI-0100 also enhanced mucosal IgA titers. Moreover, only GPI-0100-adjuvanted WIV provided partial protection against heterologous virus challenge. Pulmonary immunization with GPI-0100-adjuvanted vaccine did not induce an overt inflammatory response since influx of neutrophils and production of inflammatory cytokines were moderate and transient and lung histology was normal. Our results indicate that a GPI-0100-adjuvanted dry powder influenza vaccine is a safe and effective alternative to current parenteral vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Liofilização , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos , Saponinas/administração & dosagem , Adjuvantes Imunológicos/química , Administração por Inalação , Animais , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Células Cultivadas , Química Farmacêutica , Ilhas de CpG , Citocinas/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Ligantes , Lipídeo A/administração & dosagem , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/imunologia , Lipopeptídeos/administração & dosagem , Lipopeptídeos/química , Lipopeptídeos/imunologia , Camundongos Endogâmicos BALB C , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/química , Oligonucleotídeos/imunologia , Pós , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Saponinas/química , Saponinas/imunologia , Tecnologia Farmacêutica/métodos , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Vacinação , Vacinas de Produtos Inativados/administração & dosagem
13.
J Control Release ; 174: 51-62, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24269505

RESUMO

Prophylaxis against influenza could be improved by the development of a stable, easy to deliver, potent mucosal vaccine. In this study, we spray-freeze-dried (SFD) whole inactivated virus influenza vaccine (WIV) alone or supplemented with monophosphoryl lipid A (MPLA) using inulin as a lyoprotectant. Physical characterization revealed that the SFD powder consisted of highly porous particles with a size distribution suitable for pulmonary administration. The receptor-binding properties of WIV and the immunostimulatory properties of MPLA were preserved after spray-freeze-drying as indicated by unchanged hemagglutination titers and a retained ability of the vaccine to activate NFkB after incubation with a reporter cell line, respectively. Pulmonary vaccination of mice with MPLA-adjuvanted liquid or powder WIV resulted in induction of higher mucosal and systemic antibody concentrations than vaccination with non-adjuvanted formulations. When exposed to influenza virus, mice immunized with MPLA-adjuvanted pulmonary vaccine showed similar protection in terms of reduction in lung virus titers and prevention of weight loss as mice immunized intramuscularly with subunit vaccine. Characterization of the antibody response revealed a balanced IgG2a-to-IgG1 profile along with induction of both memory IgA- and IgG-producing B cells in mice immunized with MPLA-adjuvanted vaccine. These studies suggest that the mucosal and systemic immune responses to pulmonary delivered influenza vaccines can be significantly enhanced by using MPLA as adjuvant. MPLA-adjuvanted SFD vaccine was particularly effective implying that delivery of adjuvanted vaccine powder to the lungs can be an attractive way of immunization against influenza.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Lipídeo A/análogos & derivados , Adjuvantes Imunológicos/química , Administração por Inalação , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Cães , Feminino , Testes de Hemaglutinação , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/química , Interferon gama/imunologia , Lipídeo A/administração & dosagem , Lipídeo A/química , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/imunologia
14.
PLoS One ; 8(4): e61287, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593453

RESUMO

INTRODUCTION: RSV infection remains a serious threat to newborns and the elderly. Currently, there is no vaccine available to prevent RSV infection. A mucosal RSV vaccine would be attractive as it could induce mucosal as well as systemic antibodies, capable of protecting both the upper and lower respiratory tract. Previously, we reported on a virosomal RSV vaccine for intramuscular injection with intrinsic adjuvant properties mediated by an incorporated lipophilic Toll-like receptor 2 (TLR2) ligand. However, it has not been investigated whether this virosomal RSV vaccine candidate would be suitable for use in mucosal immunization strategies and if additional incorporation of other innate receptor ligands, like NOD2-ligand, could further enhance the immunogenicity and protective efficacy of the vaccine. OBJECTIVE: To explore if intranasal (IN) immunization with a virosomal RSV vaccine, supplemented with TLR2 and/or NOD2-ligands, is an effective strategy to induce RSV-specific immunity. METHODS: We produced RSV-virosomes carrying TLR2 (Pam3CSK4) and/or NOD2 (L18-MDP) ligands. We tested the immunopotentiating properties of these virosomes in vitro, using TLR2- and/or NOD2-ligand-responsive murine and human cell lines, and in vivo by assessing induction of protective antibody and cellular responses upon IN immunization of BALB/c mice. RESULTS: Incorporation of Pam3CSK4 and/or L18-MDP potentiates the capacity of virosomes to activate (antigen-presenting) cells in vitro, as demonstrated by NF-κB induction. In vivo, incorporation of Pam3CSK4 in virosomes boosted serum IgG antibody responses and mucosal antibody responses after IN immunization. While L18-MDP alone was ineffective, incorporation of L18-MDP in Pam3CSK4-carrying virosomes further boosted mucosal antibody responses. Finally, IN immunization with adjuvanted virosomes, particularly Pam3CSK4/L18-MDP-adjuvanted-virosomes, protected mice against infection with RSV, without priming for enhanced disease. CONCLUSION: Mucosal immunization with RSV-virosomes, supplemented with incorporated TLR2- and/or NOD2-ligands, represents a promising approach to induce effective and safe RSV-specific immunity.


Assuntos
Imunidade nas Mucosas/imunologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Vírus Sinciciais Respiratórios/imunologia , Receptor 2 Toll-Like/metabolismo , Vacinas Virossomais/efeitos adversos , Vacinas Virossomais/imunologia , Administração Intranasal , Animais , Linhagem Celular , Feminino , Humanos , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Vírus Sinciciais Respiratórios/fisiologia , Especificidade da Espécie
15.
Influenza Other Respir Viruses ; 7(6): 1227-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23575113

RESUMO

BACKGROUND: Non-replicating respiratory syncytial virus (RSV) vaccine candidates could potentially prime for enhanced respiratory disease (ERD) due to a T-cell-mediated immunopathology, following RSV infection. Vaccines with built-in immune response modifiers, such as Toll-like receptor (TLR) ligands, may avoid such aberrant imprinting of the immune system. METHODS: We developed reconstituted RSV envelopes (virosomes) with incorporated TLR4 ligand, monophosphoryl lipid A (RSV-MPLA virosomes). Immune responses and lung pathology after vaccination and challenge were investigated in ERD-prone cotton rats and compared with responses induced by live virus and formaldehyde-inactivated vaccine (FI-RSV), a known cause of ERD upon RSV challenge. RESULTS: Vaccination with RSV-MPLA virosomes induced higher levels of virus-neutralizing antibodies than FI-RSV or live virus infection and provided protection against infection. FI-RSV, but not RSV-MPLA virosomes, primed for increases in expression of Th2 cytokines IL-4, IL-5, IL-13, and Th1 cytokine IL-1b, 6 hour-5 days after infection. By contrast, RSV-MPLA virosomes induced IFN-γ transcripts to similar levels as induced by live virus. Animals vaccinated with FI-RSV, but not RSV-MPLA virosomes showed alveolitis, with prominent neutrophil influx and peribronchiolar and perivascular infiltrates. CONCLUSION: These results show that RSV-MPLA virosomes represent a safe and immunogenic vaccine candidate that warrants evaluation in a clinical setting.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Lipídeo A/análogos & derivados , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Modelos Animais de Doenças , Feminino , Lipídeo A/administração & dosagem , Pulmão/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Sigmodontinae , Vacinas Virossomais/administração & dosagem , Vacinas Virossomais/efeitos adversos , Vacinas Virossomais/imunologia
16.
Vaccine ; 31(17): 2169-76, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23499594

RESUMO

Respiratory syncytial virus infection remains a serious health problem, not only in infants but also in immunocompromised adults and the elderly. An effective and safe vaccine is not available due to several obstacles: non-replicating RSV vaccines may prime for excess Th2-type responses and enhanced respiratory disease (ERD) upon natural RSV infection of vaccine recipients. We previously found that inclusion of the Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) in reconstituted RSV membranes (virosomes) potentiates vaccine-induced immunity and skews immune responses toward a Th1-phenotype, without priming for ERD. As mucosal immunization is an attractive approach for induction of RSV-specific systemic and mucosal antibody responses and TLR ligands could potentiate such responses, we explored the efficacy and safety of RSV-MPLA virosomes administered intranasally (IN) to mice and cotton rats. In mice, we found that incorporation of MPLA in IN-administered RSV virosomes increased both systemic IgG and local secretory-IgA (S-IgA) antibody levels and resulted in significantly reduced lung viral titers upon live virus challenge. Also, RSV MPLA virosomes induced more Th1-skewed responses compared to responses induced by FI-RSV. Antibody responses and Th1/Th2-cytokine responses induced by RSV-MPLA virosomes were comparable to those induced by live RSV infection. By comparison, formalin-inactivated RSV (FI-RSV) induced serum IgG that inhibited viral shedding upon challenge, but also induced Th2-skewed responses. In cotton rats, similar effects of incorporation of MPLA in virosomes were observed with respect to induction of systemic antibodies and inhibition of lung viral shedding upon challenge, but mucosal sS-IgA responses were only moderately enhanced. Importantly, IN immunization with RSV-MPLA virosomes, like live virus infection, did not lead to any signs of ERD upon live virus challenge of vaccinated animals, whereas IM immunization with FI-RSV did induce severe lung immunopathology under otherwise comparable conditions. Taken together, these data show that mucosally administered RSV-MPLA virosomes hold promise for a safe and effective vaccine against RSV.


Assuntos
Lipídeo A/análogos & derivados , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Sigmodontinae/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Apresentação Cruzada , Citocinas/imunologia , Feminino , Imunoglobulina A Secretora/sangue , Imunoglobulina G/sangue , Lipídeo A/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/fisiologia , Células Th1/imunologia , Receptor 4 Toll-Like/imunologia , Vacinação , Virossomos/administração & dosagem
17.
PLoS One ; 8(5): e63163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658804

RESUMO

Current influenza vaccines fail to induce protection against antigenically distinct virus strains. Accordingly, there is a need for the development of cross-protective vaccines. Previously, we and others have shown that vaccination with whole inactivated virus (WIV) induces cross-protective cellular immunity in mice. To probe the mechanistic basis for this finding, we investigated the role of TLR7, a receptor for single-stranded RNA, in induction of cross-protection. Vaccination of TLR7-/- mice with influenza WIV failed to protect against a lethal heterosubtypic challenge; in contrast, wild-type mice were fully protected. The lack of protection in TLR7-/- mice was associated with high viral load and a relative paucity of influenza-specific CD8+ cytotoxic T lymphocyte (CTL) responses. Dendritic cells (DCs) from TLR7-/- mice were unable to cross-present WIV-derived antigen to influenza-specific CTLs in vitro. Similarly, TLR7-/- DCs failed to mature and become activated in response to WIV, as determined by the assessment of surface marker expression and cytokine production. Plasmacytoid DCs (pDCs) derived from wild-type mice responded directly to WIV while purified conventional DCs (cDCs) did not respond to WIV in isolation, but were responsive in mixed pDC/cDC cultures. Depletion of pDCs prior to and during WIV immunization resulted in reduced numbers of influenza-specific CTLs and impaired protection from heterosubtypic challenge. Thus, TLR7 plays a critical role in the induction of cross-protective immunity upon vaccination with WIV. The initial target cells for WIV appear to be pDCs which by direct or indirect mechanisms promote activation of robust CTL responses against conserved influenza epitopes.


Assuntos
Proteção Cruzada/imunologia , Apresentação Cruzada/imunologia , Vírus da Influenza A/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Receptor 7 Toll-Like/metabolismo , Vacinas Virais/imunologia , Animais , Antígenos Virais/imunologia , Células Dendríticas/imunologia , Cães , Imunização , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Células Madin Darby de Rim Canino , Camundongos , Especificidade da Espécie , Linfócitos T Citotóxicos/citologia , Vacinas de Produtos Inativados/imunologia
18.
Eur J Pharm Biopharm ; 85(3 Pt A): 716-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23933147

RESUMO

One of the advantages of dry influenza vaccines over conventional liquid influenza vaccines is that they can be used for alternative routes of administration. Previous studies showed that spray freeze-drying is an excellent technique to prepare vaccine containing powders for pulmonary delivery (J.P. Amorij, V. Saluja, A.H. Petersen, W.L.J. Hinrichs, A. Huckriede, H.W. Frijlink, Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice, Vaccine 25 (2007) 8707-8717; S.A. Audouy, G. van der Schaaf, W.L.J. Hinrichs, H.W. Frijlink, J. Wilschut, A. Huckriede. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization, Vaccine (2011)). The aim of this study was to investigate the physical and immunogenic stability of spray freeze-dried whole inactivated virus influenza vaccine prepared by using inulin, dextran, and a mixture of dextran and trehalose as protectants. Physical and biochemical characteristics of the vaccine powder were maintained at temperatures up to 30 °C for 3 months. In addition, in vivo data indicate that also, the immunogenic properties of the vaccine were maintained under these storage conditions. On the other hand, in vivo results also revealed that subtle changes in powder characteristics were induced during storage at 30 °C. However, laser diffraction measurements showed that problems associated with these subtle changes can be overcome by using dry powder inhalers with an efficient powder dispersing capacity.


Assuntos
Dextranos/química , Vacinas contra Influenza/administração & dosagem , Inulina/química , Trealose/química , Animais , Química Farmacêutica , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Inaladores de Pó Seco , Excipientes/química , Feminino , Liofilização , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pós , Temperatura
19.
Influenza Other Respir Viruses ; 7(6): 1202-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102979

RESUMO

BACKGROUND: Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal virus infection in mice. Whole inactivated virus-induced cross-protection was found to be mediated primarily by flu-specific CD8+ T cells. OBJECTIVES: As it has been demonstrated that the route of vaccine administration strongly influences both the quantity and quality of vaccine-induced immunity, in this study, we determined which route of WIV administration induces optimal heterosubtypic cross-protection. METHODS: We compared the magnitude of the immune response and heterosubtypic protection against lethal A/PR/8/34 (H1N1) infection after subcutaneous (SC), intramuscular (IM), and intranasal (IN) vaccination with A/NIBRG-14 (H5N1) WIV. RESULTS: Subcutaneous and IM administration was superior to IN administration of influenza WIV in terms of flu-specific CD8+ T-cell induction and protection of mice against lethal heterosubtypic challenge. Surprisingly, despite the very low flu-specific CD8+ T-cell responses detected in IN-vaccinated mice, these animals were partially protected, most likely due to cross-reactive IgA antibodies. CONCLUSION: The results of this study show that the magnitude of WIV-induced flu-specific CD8+ T-cell activity depends on the applied vaccination route. We conclude that parenteral administration of WIV vaccine, in particular IM injection, is superior to IN vaccine delivery for the induction of heterosubtypic cross-protection and generally appears to elicit stronger immune responses than mucosal vaccination with WIV.


Assuntos
Proteção Cruzada , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinação/métodos , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Injeções Intramusculares , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
20.
PLoS One ; 7(5): e36812, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590614

RESUMO

Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNγ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation.


Assuntos
Adjuvantes Imunológicos , Lipídeo A/análogos & derivados , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Anticorpos Antivirais/imunologia , Imunoglobulina G/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Lipídeo A/imunologia , Lipídeo A/farmacologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/farmacologia , Baço/imunologia , Células Th1/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia , Vacinas Virossomais/imunologia , Vacinas Virossomais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA