Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 43(1): 51-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848166

RESUMO

Macrophages comprise a heterogeneous immune cell population and display niche-specific phenotypes and functions in almost all organs. Testicular macrophages (TMs) perform essential immune and non-immune functions in the mammalian male gonads. Here, we discuss the most recent findings on TM ontogeny, heterogeneity, and function under steady state and inflammatory conditions. We also highlight new discoveries regarding the functions of macrophages during bacterial and viral infections of the testes and how macrophages may indirectly help the establishment of a reservoir through virus seeding. Understanding TM function and macrophage-related mechanisms of disease might assist in developing new opportunities for intervention in male infertility.


Assuntos
Macrófagos , Testículo , Animais , Humanos , Masculino , Mamíferos
2.
Hum Reprod ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775335

RESUMO

STUDY QUESTION: Does the chemokine/chemokine receptor axis, involved in immune cell trafficking, contribute to the pathology of testicular inflammation and how does activin A modulate this network? SUMMARY ANSWER: Testicular chemokines and their receptors (especially those essential for trafficking of monocytes) are elevated in orchitis, and activin A modulates the expression of the chemokine/chemokine receptor network to promote monocyte/macrophage and T cell infiltration into the testes, causing extensive tissue damage. WHAT IS KNOWN ALREADY: The levels of CC motif chemokine receptor (CCR)2 and its ligand CC motif chemokine ligand (CCL)2 are increased in experimental autoimmune orchitis (EAO) compared with healthy testes, and mice deficient in CCR2 are protected from EAO-induced tissue damage. Activin A induces CCR2 expression in macrophages, promoting their migration. Moreover, there is a positive correlation between testicular activin A concentration and the severity of autoimmune orchitis. Inhibition of activin A activity by overexpression of follistatin (FST) reduces EAO-induced testicular damage. STUDY DESIGN, SIZE, DURATION: EAO was induced in 10-12-week-old male C57BL/6J (wild-type; WT) and B6.129P2-Ccr2tm1Mae/tm1Mae (Ccr2-/-) mice (n = 6). Adjuvant (n = 6) and untreated (n = 6) age-matched control mice were also included. Testes were collected at 50 days after the first immunization with testicular homogenate in complete Freund's adjuvant. In another experimental setup, WT mice were injected with a non-replicative recombinant adeno-associated viral vector carrying a FST315-expressing gene cassette (rAAV-FST315; n = 7-9) or an empty control vector (n = 5) 30 days prior to EAO induction. Appropriate adjuvant (n = 4-5) and untreated (n = 4-6) controls were also examined. Furthermore, human testicular biopsies exhibiting focal leukocytic infiltration and impaired spermatogenesis (n = 17) were investigated. Biopsies showing intact spermatogenesis were included as controls (n = 9). Bone-marrow-derived macrophages (BMDMs) generated from WT mice were treated with activin A (50 ng/ml) for 6 days. Activin-A-treated or untreated BMDMs were then co-cultured with purified mouse splenic T cells for two days to assess chemokine and cytokine production. PARTICIPANTS/MATERIALS, SETTING, METHODS: Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of chemokines in total testicular RNA collected from mice. Immunofluorescence staining was used to detect activin A, F4/80, and CD3 expression in mouse testes. The expression of chemokine/chemokine-receptor-encoding genes was examined in human testicular biopsies by qRT-PCR. Correlations between chemokine expression levels and either the immune cell infiltration density or the mean spermatogenesis score were analyzed. Immunofluorescence staining was used to evaluate the expression of CD68 and CCR2 in human testicular biopsies. RNA isolated from murine BMDMs was used to characterize these cells in terms of their chemokine/chemokine receptor expression levels. Conditioned media from co-cultures of BMDMs and T cells were collected to determine chemokine levels and the production of pro-inflammatory cytokines tumor necrosis factor (TNF) and interferon (IFN)-γ by T cells. MAIN RESULTS AND THE ROLE OF CHANCE: Induction of EAO in the testes of WT mice increased the expression of chemokine receptors such as Ccr1 (P < 0.001), Ccr2 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.0001), CXC motif chemokine receptor (Cxcr)3 (P < 0.01), and CX3C motif chemokine receptor (Cx3cr)1 (P < 0.001), as well as that of most of their ligands. Ccr2 deficiency reversed some of the changes associated with EAO by reducing the expression of Ccr1 (P < 0.0001), Ccr3 (P < 0.0001), Ccr5 (P < 0.01), Cxcr3 (P < 0.001), and Cx3cr1 (P < 0.0001). Importantly, the biopsies showing impaired spermatogenesis and concomitant focal leukocytic infiltration exhibited higher expression of CCL2 (P < 0.01), CCR1 (P < 0.05), CCR2 (P < 0.001), and CCR5 (P < 0.001) than control biopsies with no signs of inflammation and intact spermatogenesis. The gene expression of CCR2 and its ligand CCL2 correlated positively with the immune cell infiltration density (P < 0.05) and negatively with the mean spermatogenesis score (P < 0.001). Moreover, CD68+ macrophages expressing CCR2 were present in human testes with leukocytic infiltration with evidence of tubular damage. Treatment of BMDMs, as surrogates for testicular macrophages, with activin A increased their expression of Ccr1, Ccr2, and Ccr5 while reducing their expression of Ccl2, Ccl3, Ccl4, Ccl6, Ccl7 Ccl8, and Ccl12. These findings were validated in vivo, by showing that inhibiting activin A activity by overexpressing FST in EAO mice decreased the expression of Ccr2 (P < 0.05) and Ccr5 (P < 0.001) in the testes. Interestingly, co-culturing activin-A-treated BMDMs and T cells reduced the levels of CCL2 (P < 0.05), CCL3/4 (P < 0.01), and CCL12 (P < 0.05) in the medium and attenuated the production of TNF (P < 0.05) by T cells. The majority of cells secreting activin A in EAO testes were identified as macrophages. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: BMDMs were used as surrogates for testicular macrophages. Hence, results obtained from the in vitro experiments might not be fully representative of the situation in the testes in vivo. Moreover, since total RNA was extracted from the testicular tissue to examine chemokine expression, the contributions of individual cell types as producers of specific chemokines may have been overlooked. WIDER IMPLICATIONS OF THE FINDINGS: Our data indicate that macrophages are implicated in the development and progression of testicular inflammation by expressing CCR2 and activin A, which ultimately remodel the chemokine/chemokine receptor network and recruit other immune cells to the site of inflammation. Consequently, inhibition of CCR2 or activin A could serve as a potential therapeutic strategy for reducing testicular inflammation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the International Research Training Group in 'Molecular pathogenesis on male reproductive disorders', a collaboration between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK1871/1-2) funded by the Deutsche Forschungsgemeinschaft and Monash University, a National Health and Medical Research Council of Australia Ideas Grant (1184867), and the Victorian Government's Operational Infrastructure Support Programme. The authors declare no competing financial interests.

3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372158

RESUMO

Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.


Assuntos
Infertilidade Masculina/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Epididimo/imunologia , Epididimo/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Testículo/imunologia , Testículo/metabolismo
4.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33328325

RESUMO

Macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT) are widely expressed pro-inflammatory cytokines with chemokine-like functions that coordinate a wide spectrum of biological activities, such as migration. Here, we biotin-tagged intracellular MIF/D-DT in vivo to identify important cytosolic interactors and found a plethora of actin cytoskeleton-associated proteins. Although the receptor complex between CD74 and CD44 (CD74/CD44) is essential for signalling transduction in fibroblasts via extracellular MIF/D-DT, our interactome data suggested direct effects. We, thus, investigated whether MIF/D-DT can modulate cell migration independently of CD74/CD44. To distinguish between receptor- and non-receptor-mediated motility, we used fibroblasts that are either deficient or that express CD74/CD44 proteins, and treated them with recombinant MIF/D-DT. Interestingly, only MIF could stimulate chemokinesis in the presence or absence of CD74/CD44. The pro-migratory effects of MIF depended on lipid raft/caveolae-mediated but not clathrin-mediated endocytosis, on its tautomerase activity and, probably, on its thiol protein oxidoreductase activity. As MIF treatment restrained actin polymerisation in vitro, our findings establish a new intracellular role for MIF/D-DT in driving cell motility through modulation of the actin cytoskeleton.


Assuntos
Movimento Celular , Fatores Inibidores da Migração de Macrófagos , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Células COS , Membrana Celular , Chlorocebus aethiops , Fibroblastos , Células HEK293 , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Receptores de Hialuronatos , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Células NIH 3T3 , Transdução de Sinais
5.
Reprod Fertil Dev ; 35(11): 589-600, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393946

RESUMO

CONTEXT: The Pxt1 gene encodes a male germ cell-specific protein and its overexpression results in male germ cell degeneration and male infertility in transgenic mice. AIMS: The analysis of the function of Pxt1 during mouse spermatogenesis. METHODS: The phenotype of Pxt1 knockout mice was characterised by testicular histology, assessment of semen parameters including sperm motility, and DNA fragmentation by flow cytometry. Gene expression was analysed using RT-PCR. Fertility of mutants was checked by standard breeding and competition breeding tests. KEY RESULTS: In Pxt1 -/- mice, a strong increase in the sperm DNA fragmentation index (DFI) was observed, while other sperm parameters were comparable to those of control animals. Despite enhanced DFI, mutants were fertile and able to mate in competition with wild type males. CONCLUSIONS: Pxt1 induces cell death; thus, the higher sperm DFI of mice with targeted deletion of Pxt1 suggests some function for this gene in the elimination of male germ cells with chromatin damage. IMPLICATIONS: Ablation of mouse Pxt1 results in enhanced DFI. In humans, the homologous PXT1 gene shares 74% similarity with the mouse gene; thus, it can be considered a candidate for mutation screening in patients with increased DFI.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Cromatina , DNA , Fragmentação do DNA , Infertilidade Masculina/patologia , Camundongos Knockout , Camundongos Transgênicos , Motilidade dos Espermatozoides/genética , Espermatozoides/patologia
6.
Cell Mol Life Sci ; 79(12): 602, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434305

RESUMO

Experimental autoimmune-orchitis (EAO), a rodent model of chronic testicular inflammation and fibrosis, replicates pathogenic changes seen in some cases of human spermatogenic disturbances. During EAO, increased levels of pro-inflammatory and pro-fibrotic mediators such as TNF, CCL2, and activin A are accompanied by infiltration of leukocytes into the testicular parenchyma. Activin A levels correlate with EAO severity, while elevated CCL2 acting through its receptor CCR2 mediates leukocyte trafficking and recruits macrophages. CCR2 + CXCR4 + macrophages producing extracellular matrix proteins contribute widely to fibrogenesis. Furthermore, testicular macrophages (TMs) play a critical role in organ homeostasis. Therefore, we aimed to investigate the role of the activin A/CCL2-CCR2/macrophage axis in the development of testicular fibrosis. Following EAO induction, we observed lower levels of organ damage, collagen deposition, and leukocyte infiltration (including fibronectin+, collagen I+ and CXCR4+ TMs) in Ccr2-/- mice than in WT mice. Furthermore, levels of Il-10, Ccl2, and the activin A subunit Inhba mRNAs were lower in Ccr2-/- EAO testes. Notably, fibronectin+ TMs were also present in biopsies from patients with impaired spermatogenesis and fibrotic alterations. Overexpression of the activin A antagonist follistatin reduced tissue damage and collagen I+ TM accumulation in WT EAO testes, while treating macrophages with activin A in vitro increased the expression of Ccr2, Fn1, Cxcr4, and Mmp2 and enhanced migration along a CCL2 gradient; these effects were abolished by follistatin. Taken together, our data indicate that CCR2 and activin A promote fibrosis during testicular inflammation by regulating macrophage function. Inhibition of CCR2 or activin A protects against damage progression, offering a promising avenue for therapeutic intervention.


Assuntos
Orquite , Masculino , Humanos , Camundongos , Animais , Folistatina , Fibronectinas , Macrófagos , Fibrose , Inflamação , Receptores CCR2/genética
7.
Cell Mol Life Sci ; 78(7): 3621-3635, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33507326

RESUMO

Galectin 3 is a multifunctional lectin implicated in cellular proliferation, differentiation, adhesion, and apoptosis. This lectin is broadly expressed in testicular somatic cells and germ cells, and is upregulated during testicular development. Since the role of galectin 3 in testicular function remains elusive, we aimed to characterize the role of galectin 3 in testicular physiology. We found that galectin 3 transgenic mice (Lgals3-/-) exhibited significantly decreased testicular weight in adulthood compared to controls. The transgenic mice also exhibited a delay to the first wave of spermatogenesis, a decrease in the number of germ cells at postnatal day 5 (P5) and P15, and defective Sertoli cell maturation. Mechanistically, we found that Insulin-like-3 (a Leydig cell marker) and enzymes involved in steroid biosynthesis were significantly upregulated in adult Lgals3-/- testes. These observations were accompanied by increased serum testosterone levels. To determine the underlying causes of the testicular atrophy, we monitored cellular apoptosis. Indeed, adult Lgals3-/- testicular cells exhibited an elevated apoptosis rate that is likely driven by downregulated Bcl-2 and upregulated Bax and Bak expression, molecules responsible for live/death cell balance. Moreover, the percentage of testicular macrophages within CD45+ cells was decreased in Lgals3-/- mice. These data suggest that galectin 3 regulates spermatogenesis initiation and Sertoli cell maturation in part, by preventing germ cells from undergoing apoptosis and regulating testosterone biosynthesis. Going forward, understanding the role of galectin 3 in testicular physiology will add important insights into the factors governing the development of germ cells and steroidogenesis and delineate novel biomarkers of testicular function.


Assuntos
Apoptose , Galectina 3/fisiologia , Células Intersticiais do Testículo/patologia , Células de Sertoli/patologia , Espermatogênese , Espermatozoides/patologia , Animais , Hormônio Foliculoestimulante/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Testosterona/metabolismo
8.
J Infect Dis ; 223(6): 1040-1051, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33453118

RESUMO

Urinary tract infections are common and costly diseases affecting millions of people. Uropathogenic Escherichia coli (UPEC) is a primary cause of these infections and has developed multiple strategies to avoid the host immune response. Here, we dissected the molecular mechanisms underpinning UPEC inhibition of inflammatory cytokine in vitro and in vivo. We found that UPEC infection simulates nuclear factor-κB activation but does not result in transcription of cytokine genes. Instead, UPEC-mediated suppression of the metabolic enzyme ATP citrate lyase results in decreased acetyl-CoA levels, leading to reduced H3K9 histone acetylation in the promotor region of CXCL8. These effects were dependent on the UPEC virulence factor α-hemolysin and were reversed by exogenous acetate. In a murine cystitis model, prior acetate supplementation rapidly resolved UPEC-elicited immune responses and improved tissue recovery. Thus, upon infection, UPEC rearranges host cell metabolism to induce chromatin remodeling processes that subvert expression of host innate immune response genes.


Assuntos
Citocinas/imunologia , Infecções por Escherichia coli , Proteínas Hemolisinas , Infecções Urinárias , Escherichia coli Uropatogênica , Acetilação , Animais , Citocinas/genética , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Camundongos , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/metabolismo , Fatores de Virulência/metabolismo
9.
Mol Hum Reprod ; 26(4): 215-227, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32011693

RESUMO

Ascending bacterial urinary tract infections can cause epididymo-orchitis. In the cauda epididymidis, this frequently leads to persistent tissue damage. Less coherent data is available concerning the functional consequences of epididymo-orchitis on testis and caput epididymidis. This in vivo study addresses the functional and spatial differences in responsiveness of murine epididymis and testis to infection with uropathogenic Escherichia coli (UPEC). Whole transcriptome analysis (WTA) was performed on testis, caput, corpus and cauda epididymidis of adult C57BL/6 J wildtype mice. Following UPEC-induced epididymo-orchitis in these mice, epididymal and testicular tissue damage was evaluated histologically and semi-quantitatively at 10 days and 31 days post-inoculation. Expression of inflammatory markers and candidate antimicrobial genes were analysed by RT-qPCR. WTA revealed distinct differences in gene signatures between caput and cauda epididymidis, particularly amonst immunity-related genes. Cellular and molecular signs of testicular inflammation and disruption of spermatogenesis were noticed at day 10, but recovery was observed by day 31. In contrast to the cauda, the caput epididymidis did not reveal any signs of gross morphological damage or presence of pro-inflammatory processes despite confirmed infection. In contrast to beta-defensins, known UPEC-associated antimicrobial peptides (AMP), like Lcn2, Camp and Lypd8, were inherently highly expressed or upregulated in the caput following infection, potentially allowing an early luminal protection from UPEC. At the time points investigated, the caput epididymidis was protected from any obvious infection/inflammation-derived tissue damage. Studies addressing earlier time-points will conclude whether in the caput epididymidis a pro-inflammatory response is indeed not essential for effective protection from UPEC.


Assuntos
Epididimite/patologia , Infecções por Escherichia coli/patologia , Orquite/patologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica , Animais , Epididimo/imunologia , Epididimo/patologia , Epididimite/imunologia , Epididimite/microbiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Imunidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquite/imunologia , Orquite/microbiologia , Testículo/imunologia , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , beta-Defensinas/metabolismo
10.
Cell Tissue Res ; 381(2): 351-360, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32383098

RESUMO

Epididymitis is a common pathology of the male reproductive tract, potentially leading to infertility. Studies on bacterial epididymitis indicate that the cauda epididymis is more susceptible to inflammatory damage than the caput. These regional differences in immunoregulation are further investigated using an experimental autoimmune epididymo-orchitis model. Adult mice were immunized against testicular antigens and tissues were collected at 30 and 50 days following the first immunization. Epididymitis developed progressively; 70% of the mice developed disease at 30 days after the initial immunization and 93% at 50 days. Epididymitis was characterized by epithelial damage, immune cell infiltrates and fibrosis in the cauda, with minimal changes in the corpus, while the caput was unaffected. The incidence of epididymitis was greater than that of orchitis but similar to vasitis. The severity of epididymitis was positively correlated with the orchitis severity. Expression of key genes implicated in epididymal immunoregulation, inflammation and fibrosis, such as Ido1, Tnf, Tgfb1, Ccl2, Il1b, Il10, Cx3cl1 and Col1a1, was unchanged in the caput but increased in proportion to damage severity in the cauda at 50 days. Activin receptor mRNA expression in the cauda was negatively correlated with disease severity. These data suggest that the cauda is highly susceptible to inflammatory damage following an autoimmune challenge but the caput is minimally affected. This may be because the cauda is required to combat ascending infections through a robust inflammatory response, while the caput provides a more tolerogenic environment in order to protect the auto-antigenic sperm released from the testis.


Assuntos
Doenças Autoimunes/patologia , Epididimo , Epididimite/imunologia , Expressão Gênica/imunologia , Animais , Biomarcadores/metabolismo , Epididimo/imunologia , Epididimo/patologia , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Cell Mol Med ; 23(6): 3867-3877, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30968541

RESUMO

Macrophage migration inhibitory factor (MIF) is pleiotropic cytokine that has multiple effects in many inflammatory and immune diseases. This study reveals a potential role of MIF in acute kidney injury (AKI) in patients and in kidney ischemic reperfusion injury (IRI) mouse model in MIF wild-type (WT) and MIF knockout (KO) mice. Clinically, plasma and urinary MIF levels were largely elevated at the onset of AKI, declined to normal levels when AKI was resolved and correlated tightly with serum creatinine independent of disease causes. Experimentally, MIF levels in plasma and urine were rapidly elevated after IRI-AKI and associated with the elevation of serum creatinine and the severity of tubular necrosis, which were suppressed in MIF KO mice. It was possible that MIF may mediate AKI via CD74/TLR4-NF-κB signalling as mice lacking MIF were protected from AKI by largely suppressing CD74/TLR-4-NF-κB associated renal inflammation, including the expression of MCP-1, TNF-α, IL-1ß, IL-6, iNOS, CXCL15(IL-8 in human) and infiltration of macrophages, neutrophil, and T cells. In conclusion, our study suggests that MIF may be pathogenic in AKI and levels of plasma and urinary MIF may correlate with the progression and regression of AKI.


Assuntos
Injúria Renal Aguda/sangue , Oxirredutases Intramoleculares/sangue , Rim/patologia , Fatores Inibidores da Migração de Macrófagos/sangue , Traumatismo por Reperfusão/sangue , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/urina , Adulto , Idoso , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Quimiocina CCL2/metabolismo , Creatinina/sangue , Citocinas/sangue , Modelos Animais de Doenças , Progressão da Doença , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/urina , Rim/imunologia , Rim/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/urina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/urina , Receptor 4 Toll-Like/metabolismo
12.
Hum Reprod ; 34(7): 1195-1205, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31211847

RESUMO

STUDY QUESTION: Can dexamethasone improve infertility-related cauda epididymidal tissue damage caused by bacterial epididymitis? SUMMARY ANSWER: Dexamethasone in addition to anti-microbial treatment effectively reduces long-term deleterious epididymal tissue damage by dampening the host's adaptive immune response. WHAT IS KNOWN ALREADY: Despite effective anti-microbial treatment, ~40% of patients with epididymitis experience subsequent sub- or infertility. An epididymitis mouse model has shown that the host immune response is mainly responsible for the magnitude of epididymal tissue damage that is fundamentally causative of the subsequent fertility issues. STUDY DESIGN, SIZE, DURATION: Bacterial epididymitis was induced in male mice by using uropathogenic Escherichia coli (UPEC). From Day 3 after infection onwards, mice were treated with daily doses of levofloxacin (20 mg/kg, total n = 12 mice), dexamethasone (0.5 mg/kg, total n = 9) or both in combination (total n = 11) for seven consecutive days. Control animals were left untreated, i.e. given no interventional treatment following UPEC infection (total n = 11). Half of the animals from each group were killed either at 10 or 31 days post-infection. PARTICIPANTS/MATERIALS, SETTING, METHODS: A mouse model of induced bacterial epididymitis was applied to adult male C57BL/6J mice. At the respective endpoints (10 or 31 days post-infection), epididymides were collected. Effectiveness of antibiotic treatment was assessed by plating of epididymal homogenates onto lysogeny broth agar plates. Overall tissue morphology and the degree and nature of tissue damage were assessed histologically. Quantitative RT-PCR was used to assess local cytokine transcript levels. Blood was drawn and serum analysed for systemic IgG and IgM levels by ELISA. In addition, correlation analyses of clinical data and serum-analyses of IgG and IgM levels in patients with epididymitis were performed. MAIN RESULTS AND THE ROLE OF CHANCE: The addition of dexamethasone to the standard anti-microbial treatment did not further worsen epididymal tissue integrity. In fact, an obviously dampened immune response and reduced tissue reaction/damage was observed at both 10 and 31 days post-infection following combined treatment. More specifically, epididymal duct continuity was preserved, enabling sperm transit. In contrast, in untreated or antibiotic-treated animals, damage of the epididymal duct and duct constrictions were observed, associated with a lack of cauda spermatozoa. In line with the bacteriostatic/bactericidal effect of levofloxacin (alone as well as in combination), local cytokine transcript levels were significantly and similarly reduced in animals treated with levofloxacin alone (P < 0.01) or in combination with dexamethasone (P < 0.05) compared to UPEC-infected untreated animals. Interestingly, the addition of dexamethasone to the anti-microbial treatment induced a unique dampening effect on adaptive immunity, since systemic IgG and IgM levels as well as the pan-T cell marker CD3 were reduced at both 10 and 31 days post-infection. LIMITATIONS, REASONS FOR CAUTION: Breeding studies to address the fertility-protecting effect of the combined treatment were not possible in the experimental animals because the vas deferens was ligated (model specific). WIDER IMPLICATIONS OF THE FINDINGS: Whereas innate immunity is necessary and involved in acute bacterial clearance, adaptive immunity seems to be responsible for long-term, subclinical immunological activities that may negatively affect the pathogenesis of bacterial epididymitis even after effective bacterial eradication. These effects can be reduced in mice by the additional treatment with dexamethasone. This immunological characteristic of bacterial epididymitis shows similarities to the Jarisch-Herxheimer reaction known from other types of bacterial infection. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by grants from the Deutsche Forschungsgemeinschaft, Monash University and the Medical Faculty of Justus-Liebig University to the International Research Training Group on 'Molecular pathogenesis of male reproductive disorders' (GRK 1871). R.W., K.L.L. and M.P.H. were supported by grants from the National Health and Medical Research Council of Australia (ID1079646, ID1081987, ID1020269 and ID1063843) and by the Victorian Government's Operational Infrastructure Support Program. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: No clinical trial involved.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Epididimo/efeitos dos fármacos , Epididimite/tratamento farmacológico , Infertilidade Masculina/tratamento farmacológico , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Carga Bacteriana , Citocinas/metabolismo , Dexametasona/farmacologia , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Epididimo/metabolismo , Epididimo/patologia , Epididimite/complicações , Epididimite/metabolismo , Epididimite/patologia , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Infertilidade Masculina/etiologia , Levofloxacino/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL
13.
Hum Reprod ; 34(8): 1536-1550, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31340036

RESUMO

STUDY QUESTION: Does activin A contribute to testicular fibrosis under inflammatory conditions? SUMMARY ANSWER: Our results show that activin A and key fibrotic proteins are increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis and in murine experimental autoimmune orchitis (EAO) and that activin A stimulates fibrotic responses in peritubular cells (PTCs) and NIH 3T3 fibroblasts. WHAT IS KNOWN ALREADY: Fibrosis is a feature of EAO. Activin A, a regulator of fibrosis, was increased in testes of mice with EAO and its expression correlated with severity of the disease. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional and longitudinal study of adult mice immunized with testicular homogenate (TH) in adjuvant to induce EAO, collected at 30 (n = 6), 50 (n = 6) and 80 (n = 5) days after first immunization. Age-matched mice injected with adjuvant alone (n = 14) and untreated mice (n = 15) were included as controls. TH-immunized mice with elevated endogenous follistatin, injected with a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of follistatin (rAAV-FST315; n = 3) or vector with an empty cassette (empty vector controls; n = 2) 30 days prior to the first immunization, as well as appropriate adjuvant (n = 2) and untreated (n = 2) controls, were also examined.Human testicular biopsies showing focal inflammatory lesions associated with impaired spermatogenesis (n = 7) were included. Biopsies showing intact spermatogenesis without inflammation, from obstructive azoospermia patients, served as controls (n = 7).Mouse primary PTC and NIH 3T3 fibroblasts were stimulated with activin A and follistatin 288 (FST288) to investigate the effect of activin A on the expression of fibrotic markers. Production of activin A by mouse primary Sertoli cells (SCs) was also investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testicular RNA and protein extracts collected from mice at days 30, 50 and 80 after first immunization were used for analysis of fibrotic marker genes and proteins, respectively. Total collagen was assessed by hydroxyproline assay and fibronectin; collagen I, III and IV, α-smooth muscle actin (α-SMA) expression and phosphorylation of suppressor of mothers against decapentaplegic (SMAD) family member 2 were measured by western blot. Immunofluorescence was used to detect fibronectin. Fibronectin (Fn), αSMA (Acta2), collagen I (Col1a2), III (Col3a1) and IV (Col4a1) mRNA in PTC and NIH 3T3 cells treated with activin A and/or FST288 were measured by quantitative RT-PCR (qRT-PCR). Activin A in SC following tumour necrosis factor (TNF) or FST288 stimulation was measured by ELISA. Human testicular biopsies were analysed by qRT-PCR for PTPRC (CD45) and activin A (INHBA), hydroxyproline assay and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE: Production of activin A by SC was stimulated by 25 and 50 ng/ml TNF (P < 0.01, P < 0.001, respectively) as compared to untreated cells. INHBA mRNA was increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis, compared with control biopsies (P < 0.05), accompanied by increased total collagen (P < 0.01) and fibronectin deposition. Total testicular collagen (P < 0.0001) and fibronectin protein expression (P < 0.05) were also increased in EAO, and fibronectin expression was correlated with the severity of the disease (r = 0.9028). In animals pre-treated with rAAV-FST315 prior to immunization with TH, protein expression of fibronectin was comparable to control. Stimulation of PTC and NIH 3T3 cells with activin A increased fibronectin mRNA (P < 0.05) and the production of collagen I (P < 0.001; P < 0.01) and fibronectin (P < 0.05). Moreover, activin A also increased collagen IV mRNA (P < 0.05) in PTC, while αSMA mRNA (P < 0.01) and protein (P < 0.0001) were significantly increased by activin A in NIH 3T3 cells. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: A limited number of human testicular specimens was available for the study. Part of the study was performed in vitro, including NIH 3T3 cells as a surrogate for testicular fibroblasts. WIDER IMPLICATIONS OF THE FINDINGS: Resident fibroblasts and PTC may contribute to the progression of testicular fibrosis following inflammation, and activin A is implicated as a key mediator of this process. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Health and Medical Research Council of Australia, the Victorian Government's Operational Infrastructure Support Program and the International Research Training Group between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK 1871/1-2) on `Molecular pathogenesis on male reproductive disorders' funded by the Deutsche Forschungsgemeinschaft and Monash University. The authors declare no competing financial interests.


Assuntos
Ativinas/metabolismo , Infertilidade Masculina/metabolismo , Orquite/metabolismo , Testículo/metabolismo , Animais , Colágeno/metabolismo , Fibronectinas/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Folistatina/genética , Folistatina/metabolismo , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Orquite/patologia , Espermatogênese , Testículo/patologia
14.
FASEB J ; 32(8): 4107-4120, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29490169

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infections. In this study, UPEC strains harboring hemolysin A (HlyA) did not induce programmed cell death pathways by the activation of caspases. Instead, the UPEC pore-forming toxin HlyA triggered an increase in mitochondrial Ca2+ levels and manipulated mitochondrial dynamics by causing fragmentation of the mitochondrial network. Alterations in mitochondrial dynamics resulted in severe impairment of mitochondrial functions by loss of membrane potential, increase in reactive oxygen species production, and ATP depletion. Moreover, HlyA caused disruption of plasma membrane integrity that was accompanied by extracellular release of the danger-associated molecules high-mobility group box 1 (HMGB1) and histone 3 (H3). Our results indicate that UPEC induced programmed cell necrosis by irreversibly impairing mitochondrial function. This finding suggests a strategy devised by UPEC at the onset of infection to escape early innate immune response and silently propagate inside host cells.-Lu, Y., Rafiq, A., Zhang, Z., Aslani, F., Fijak, M., Lei, T., Wang, M., Kumar, S., Klug, J., Bergmann, M., Chakraborty, T., Meinhardt, A., Bhushan, S. Uropathogenic Escherichia coli virulence factor hemolysin A causes programmed cell necrosis by altering mitochondrial dynamics.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Necrose/metabolismo , Fatores de Virulência/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Morte Celular/fisiologia , Membrana Celular/metabolismo , Proteína HMGB1/metabolismo , Histonas/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Necrose/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
15.
J Immunol ; 198(11): 4327-4340, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461571

RESUMO

Macrophages are important in the activation of innate immune responses and in a tissue-specific manner in the maintenance of organ homeostasis. Testicular macrophages (TM), which reside in the testicular interstitial space, comprise the largest leukocyte population in the testes and are assumed to play a relevant function in maintaining testicular immune privilege. Numerous studies have indicated that the interstitial fluid (IF) surrounding the TM has immunosuppressive properties, which may influence the phenotype of TM. However, the identity of the immunosuppressive molecules present in the IF is poorly characterized. We show that the rat testicular IF shifted GM-CSF-induced M1 toward the M2 macrophage phenotype. IF-polarized M2 macrophages mimic the properties of TM, such as increased expression of CD163, high secretion of IL-10, and low secretion of TNF-α. In addition, IF-polarized macrophages display immunoregulatory functions by inducing expansion of immunosuppressive regulatory T cells. We further found that corticosterone was the principal immunosuppressive molecule present in the IF and that the glucocorticoid receptor is needed for induction of the testis-specific phenotype of TM. In addition, TM locally produce small amounts of corticosterone, which suppresses the basal expression of inflammatory genes as a means to render TM refractory to inflammatory stimuli. Taken together, these results suggest that the corticosterone present in the testicular environment shapes the immunosuppressive function and phenotype of TM and that this steroid may play an important role in the establishment and sustenance of the immune privilege of the testis.


Assuntos
Microambiente Celular , Líquido Extracelular/imunologia , Macrófagos/imunologia , Testículo/citologia , Testículo/imunologia , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Células Cultivadas , Corticosterona/metabolismo , Líquido Extracelular/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Imunidade Inata , Interleucina-10/imunologia , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Fenótipo , Ratos , Receptores de Superfície Celular/genética , Testículo/anatomia & histologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
16.
Mol Ther ; 26(10): 2523-2532, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30077612

RESUMO

Macrophage migration inhibitory factor (MIF) is elevated in patients with acute kidney injury (AKI) and is suggested as a potential predictor for renal replacement therapy in AKI. In this study, we found that MIF also plays a pathogenic role and is a therapeutic target for AKI. In a cisplatin-induced AKI mouse model, elevated plasma MIF correlated with increased serum creatinine and the severity of renal inflammation and tubular necrosis, whereas deletion of MIF protected the kidney from cisplatin-induced AKI by largely improving renal functional and histological injury, and suppressing renal inflammation including upregulation of cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF-α), IL-6, inducible nitric oxide synthase (iNOS), MCP-1, IL-8, and infiltration of macrophages, neutrophils, and T cells. We next developed a novel therapeutic strategy for AKI by blocking the endogenous MIF with an MIF inhibitor, ribosomal protein S19 (RPS19). Similar to the MIF-knockout mice, treatment with RPS19, but not the mutant RPS19, suppressed cisplatin-induced AKI. Mechanistically, we found that both genetic knockout and pharmacological inhibition of MIF protected against AKI by inactivating the CD74-nuclear factor κB (NF-κB) signaling. In conclusion, MIF is pathogenic in cisplatin-induced AKI. Targeting MIF with an MIF inhibitor RPS19 could be a promising therapeutic potential for AKI.


Assuntos
Injúria Renal Aguda/terapia , Inflamação/terapia , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Proteínas Ribossômicas/administração & dosagem , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Antígenos de Diferenciação de Linfócitos B/genética , Apoptose/efeitos dos fármacos , Cisplatino/efeitos adversos , Terapia Genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/patologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Knockout , NF-kappa B/genética , Necrose , Proteínas Ribossômicas/genética , Transdução de Sinais/efeitos dos fármacos
17.
Histochem Cell Biol ; 150(1): 49-59, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663073

RESUMO

Tight connection between sperm head and tail is crucial for the transport of the male genome and fertilization. The linkage complex, the sperm head-to-tail coupling apparatus (HTCA), originates from the centrosome and anchors to the nuclear membrane. In contrast to its ultra-structural organization, which is already well known for decades, its protein composition largely still awaits future deciphering. SUN-domain proteins are essential components of a complex that links the cytoskeleton to the peripheral nucleoskeleton, which is the nuclear lamina. Here, we studied the impact of the SUN protein SPAG4/SUN4 on the formation of the HTCA. SPAG4/SUN4 is specifically expressed in haploid male germ cells showing a polarized distribution towards the posterior pole in late spermatids that corresponds to the tail attachment site. SPAG4-deficient male mice are infertile with compromised manchette formation and malformed sperm heads. Nonetheless, sperm tails are present demonstrating dispensability of a proper manchette for their formation. Ultra-structural analyses revealed that the development of the sperm head-to-tail linkage complex in the absence of SPAG4 resembles that in the wild type. However, in SPAG4-deficient sperm, the attachment site is diminished with obvious lateral detachment of the HTCA from the nucleus. Our results thus indicate that SPAG4, albeit not essential for the formation of the HTCA per se, is, nevertheless, required for tightening the sperm head-to-tail anchorage by provoking the correct attachment of the lateral parts of the basal plate to the implantation fossa.


Assuntos
Proteínas Nucleares/deficiência , Cabeça do Espermatozoide/química , Cabeça do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/química , Cauda do Espermatozoide/ultraestrutura , Animais , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cabeça do Espermatozoide/metabolismo , Cauda do Espermatozoide/metabolismo
18.
Reproduction ; 155(1): 15-23, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030492

RESUMO

Activin A regulates testicular and epididymal development, but the role of activin B in the epididymis and vas deferens is unknown. Mouse models with reduced activin A (Inhba+/- and InhbaBK/+), or its complete absence (InhbaBK/BK), were investigated to identify specific roles of activins in the male reproductive tract. In 8-week-old Inhba+/- mice, serum activin A decreased by 70%, with a 50% reduction of gene expression and protein in the testis, epididymis and vas deferens. Activin B and the activin-binding protein, follistatin, were similar to wild-type. Testis weights were slightly reduced in Inhba+/- mice, but the epididymis and vas deferens were normal, while the mice were fertile. Activin A was decreased by 70% in the serum, testis, epididymis and vas deferens of InhbaBK/+ mice and was undetectable in InhbaBK/BK mice, but activin B and follistatin levels were similar to wild-type. In 6-week-old InhbaBK/BK mice, testis weights were 60% lower and epididymal weights were 50% lower than in either InhbaBK/+ or wild-type mice. The cauda epididymal epithelium showed infoldings and less intra-luminal sperm, similar to 3.5-week-old wild-type mice, but at 8 weeks, no structural differences in the testis or epididymis were noted between InhbaBK/BK and wild-type mice. Thus, Inhbb can compensate for Inhba in regulating epididymal morphology, although testis and epididymal maturation is delayed in mice lacking Inhba Crucially, reduction or absence of activin A, at least in the presence of normal activin B levels, does not lead to major defects in the adult epididymis or vas deferens.


Assuntos
Epididimo/metabolismo , Regulação da Expressão Gênica , Subunidades beta de Inibinas/fisiologia , Ducto Deferente/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout
19.
J Biol Chem ; 291(34): 17717-26, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27339898

RESUMO

Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis.


Assuntos
Epididimite/metabolismo , Glicocálix/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Espermatozoides/metabolismo , Infecções Urinárias/metabolismo , Escherichia coli Uropatogênica , Animais , Modelos Animais de Doenças , Epididimite/patologia , Glicocálix/patologia , Humanos , Masculino , Camundongos , Neuraminidase/metabolismo , Espermatozoides/patologia , Infecções Urinárias/patologia
20.
Mol Hum Reprod ; 23(6): 370-380, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379541

RESUMO

STUDY QUESTION: What is the underlying mechanism of Sertoli cell (SC) resistance to cell death? SUMMARY ANSWER: High expression of prosurvival B-cell lymphoma-2 (BCL2) proteins and inhibition of apoptosis and autophagy prolongs SC survival upon exposure to stress stimuli. WHAT IS KNOWN ALREADY: In human and in experimental models of orchitis, tolerogenic SC survive stress conditions, while germ cells undergo massive apoptosis. In general, non-dividing highly differentiated cells tend to resist stress conditions for a longer time by favoring activation of prosurvival mechanisms and inhibition of cell death pathways. STUDY DESIGN, SIZE, DURATION: In this cross sectional study, conditions stimulating apoptosis and autophagy were used to induce cell death in primary rat SC. Primary rat peritubular cells (PTC) and immortalized rat 93RS2 SC were used as controls. Each cell isolation was counted as one experiment (n = 1), and each experiment was repeated three to six times. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testis biopsy samples from infertile or subfertile patients and testis samples from rats with experimental autoimmune orchitis were used for immunohistological analysis. Primary SC were isolated from 19-day-old male Wistar rats. To maintain cell purity, cells were cultured in serum-free medium for apoptosis experiments and in medium supplemented with 1% serum for autophagy analyses. To induce apoptosis, cells were stimulated with staurosporine, borrelidin, cisplatin and etoposide for 4 or 24 h. Caspase three activation was examined by immunoblotting and enzymatic activity assay. Mitochondrial membrane potential was measured using tetramethylrhodamine methyl ester followed by flow cytometric analysis. Cytochrome c release was monitored by immunofluorescence. Cell viability was determined using the methylthiazole tetrazolium assay. To monitor autophagy flux, cells were deprived of nutrients using Hank's balanced salt solution for 1, 2 and 3 h. Formation of autophagosomes was analyzed by using immunoblotting, immunofluorescence labeling and ultrastructural analyses. Relative mRNA levels of genes involved in the regulation of apoptosis and autophagy were evaluated. Extracellular high mobility group box protein one was measured as a marker of necrosis using ELISA. MAIN RESULTS AND THE ROLE OF CHANCE: SC survive the inflammatory conditions in vivo in human testis and in experimental autoimmune orchitis. Treatment with apoptosis inducing chemotherapeutics did not cause caspase three activation in isolated rat SC. Moreover, mitochondrial membrane potential and mitochondrial localization of cytochrome c were not changed by treatment with staurosporine, suggesting a premitochondrial blockade of apoptosis in SC. Expression levels of prosurvival BCL2 family members were significantly higher in SC compared to PTC at both mRNA and protein levels. Furthermore, after nutrient starvation, autophagy signaling was initiated in SC as observed by decreased levels of phosphorylated UNC- 51-like kinase -1 (ULK1). However, levels of light chain 3 II (LC3 II) and sequestosome1 (SQSTM1) remained unchanged, indicating blockade of the autophagy flux. Lysosomal activity was intact in SC as shown by accumulation of LC3 II following administration of lysosomal protease inhibitors, indicating that inhibition of autophagy flux occurs at a preceding stage. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: In this study, we have used primary SC from prepubertal rats. Caution should be taken when translating our results to adult animals, where crosstalk with other testicular cells and hormonal factors may also play a role in regulating survival of SC. WIDER IMPLICATIONS OF THE FINDINGS: Our results suggest that inhibition of autophagy and apoptosis following exposure to extrinsic stress stimuli promotes SC survival, and is a possible mechanism to explain the robustness of SC in response to stress. Cell death resistance in SC is crucial for the recovery of spermatogenesis after chemotherapy treatment in cancer patients. Additionally, understanding the molecular mechanisms of SC survival unravels valuable target proteins, such as BCL2, that may be manipulated therapeutically to control cell viability depending on the context of the disease. STUDY FUNDING AND COMPETING INTEREST(S): This study was funded by the Deutsche Forschungsgemeinschaft (DFG) Grant BH93/1-1, and by the International Research Training Group between Justus Liebig University of Giessen and Monash University, Melbourne (GRK 1871/1) funded by the DFG and Monash University. The support of the Medical Faculty of Justus-Liebig University of Giessen is gratefully acknowledged. The authors declare no conflict of interest.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Infertilidade Masculina/genética , Orquite/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células de Sertoli/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Autofagia/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/genética , Cisplatino/farmacologia , Estudos Transversais , Citocromos c/metabolismo , Modelos Animais de Doenças , Etoposídeo/farmacologia , Álcoois Graxos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Orquite/imunologia , Orquite/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/patologia , Espermatogênese/genética , Estaurosporina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA