Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phys Chem Chem Phys ; 26(19): 14393-14406, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712786

RESUMO

Smart water injection is a technology that allows changing the wettability of the oil rock by injecting water at different salinities, in a cheap and environmentally friendly way compared to other traditional methods. In this study, the individual effect of some typical salts on the wettability of the (104) surface of calcite toward non-polar and polar crude oil models was explored by molecular dynamics as a function of the salinity and pH. The results obtained show that the electrical double layer plays a principal role in the detachment of crude oil models. The divalent ion salts, i.e., CaCl2, CaSO4, MgCl2, and MgSO4, do not form the electrical double layer on calcite, but salts of NaCl and Na2SO4 form it. Moreover, the surface affinity of calcite to the non-polar crude oil is not affected by the salinity. However, the affinity of the calcite surface toward polar crude is affected by salinity and pH conditions. This research provides new insights into the action mechanisms that could help optimize its uses in enhanced oil recovery.

2.
Anal Chem ; 94(21): 7536-7544, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35576165

RESUMO

Bio-oils are precursors for biofuels but are highly corrosive necessitating further upgrading. Furthermore, bio-oil samples are highly complex and represent a broad range of chemistries. They are complex mixtures not simply because of the large number of poly-oxygenated compounds but because each composition can comprise many isomers with multiple functional groups. The use of hyphenated ultrahigh-resolution mass spectrometry affords the ability to separate isomeric species of complex mixtures. Here, we present for the first time, the use of this powerful analytical technique combined with chemical reactivity to gain greater insights into the reactivity of the individual isomeric species of bio-oils. A pyrolysis bio-oils and its esterified bio-oil were analyzed using gas chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry, and in-house software (KairosMS) was used for fast comparison of the hyphenated data sets. The data revealed a total of 10,368 isomers in the pyrolysis bio-oil and an increase to 18,827 isomers after esterification conditions. Furthermore, the comparison of the isomeric distribution before and after esterification provide new light on the reactivities within these complex mixtures; these reactivities would be expected to correspond with carboxylic acid, aldehyde, and ketone functional groups. Using this approach, it was possible to reveal the increased chemical complexity of bio-oils after upgrading and target detection of valuable compounds within the bio-oils. The combination of chemical reactions alongside with in-depth molecular characterization opens a new window for the understanding of the chemistry and reactivity of complex mixtures.


Assuntos
Óleos de Plantas , Polifenóis , Biocombustíveis/análise , Biomassa , Misturas Complexas , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Óleos de Plantas/química , Polifenóis/química
3.
Phys Chem Chem Phys ; 24(18): 11412-11419, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35504048

RESUMO

The wettability of graphene oxide functionalized with N-alkylamines was studied by molecular dynamics simulations. Six different N-alkylamines and two functionalization degrees were reviewed. The nucleophilic ring-opening reaction mechanism between the N-alkylamines and epoxy functional groups of graphene oxide was considered to generate the atomistic models. Water contact angles increased with both the alkyl chain length and substitution degree. The Wenzel model was used to access the effect of both the surface roughness and alkyl chain length on wettability. The results indicated that functionalization introduces an important increase of surface roughness but its effect on wettability is countered by the alkyl chain length.

4.
Anal Bioanal Chem ; 413(17): 4545-4555, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34037808

RESUMO

Cutaneous leishmaniasis (CL) is one of the illnesses caused by Leishmania parasite infection, which can be asymptomatic or severe according to the infecting Leishmania strain. CL is commonly diagnosed by directly detecting the parasites or their DNA in tissue samples. New diagnostic methodologies target specific proteins (biomarkers) secreted by the parasite during the infection process. However, specific bioreceptors for the in vivo or in vitro detection of these novel biomarkers are rather limited in terms of sensitivity and specificity. For this reason, we here introduce three novel peptides as bioreceptors for the highly sensitive and selective identification of acid phosphatase (sAP) and proteophosphoglycan (PPG), which have a crucial role in leishmaniasis infection. These high-affinity peptides have been designed from the conservative domains of the lectin family, holding the ability to interact with the biological target and produce the same effect than the original protein. The synthetic peptides have been characterized and the affinity and kinetic constants for their interaction with the targets (sAP and PPG) have been determined by a surface plasmon resonance biosensor. Values obtained for KD are in the nanomolar range, which is comparable to high-affinity antibodies, with the additional advantage of a high biochemical stability and simpler production. Pep2854 exhibited a high affinity for sAP (KD = 1.48 nM) while Pep2856 had a good affinity for PPG (KD 1.76 nM). This study evidences that these peptidomimetics represent a novel alternative tool to the use of high molecular weight proteins for biorecognition in the diagnostic test and biosensor devices for CL.


Assuntos
Fosfatase Ácida/análise , Leishmania/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Proteínas de Membrana/análise , Peptídeos/química , Proteoglicanas/análise , Proteínas de Protozoários/análise , Ressonância de Plasmônio de Superfície/métodos , Sítios de Ligação , Humanos , Leishmania/enzimologia , Leishmaniose Cutânea/diagnóstico , Modelos Moleculares , Peptídeos/síntese química , Peptidomiméticos/síntese química , Peptidomiméticos/química
5.
Analyst ; 145(9): 3414-3423, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254686

RESUMO

Six essential oils were analyzed by Fourier transform ion cyclotron resonance mass spectrometry coupled to negative-ion electrospray ionization (ESI(-)/FT-ICR MS). ESI offers selective ionization of a compound's polar functional groups containing nitrogen and oxygen heteroatoms. ESI in negative-ion mode allows the identification of the acidic compounds. The results showed that the samples contain between 1100-3600 individual molecular compositions, which corresponds to the greatest number of species detected to date in essential oils obtained from aromatic plant material. The compositions cover a mass range between m/z 150-500 with up to 41 carbon atoms. The dominant organic constituents of the essential oils correspond to species incorporating 2-5 oxygen atoms, detected as deprotonated/sodiated/chlorinated species. A set of 580 molecular assignments were found in common across all the samples and for the first time, a set of unique molecular systems were identified, and up to 1373 species as a unique composition for each essential oil. The molecular distributions plotted in van Krevelen diagrams (classified by their H/C vs. O/C values) suggest the presence of species with long alkyl chains and low numbers of rings plus double bonds.

6.
J Am Soc Mass Spectrom ; 33(6): 952-960, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35549471

RESUMO

Cutaneous leishmaniasis is a skin disease caused by flagellate protozoa of the genus Leishmania and transmitted by sandflies of the genus Lutzomyia. Around 1 million new cases occur in the world annually, with a total of 12 million people affected, mainly in rural areas with low access to health services and adequate treatments. In the area of the Americas, Colombia has one of the highest infection rates after Brazil. Topical treatments with pentamidine isethionate (PMD) present an attractive alternative due to their ease of application and low costs. However, cutaneous leishmaniasis lesions present nodules with seropurulent exudate that, when drying, form hyperkeratotic lesions, hindering the effective penetration of drugs for their treatment. The use of molecular histology techniques, such as MALDI-MSI, allow in situ evaluation of the penetration of the treatment to the sections of the dermis where the disease-causing parasite resides. However, the large volume of information generated makes it impossible to process it manually. Machine learning techniques allow the unsupervised processing of large amounts of information, generating prediction models for the classification of new information. This work proposes a low-cost method to generate cutaneous leishmaniasis detection and classification models using MALDI-MSI images taken from murine models. The proposed models allow a 95% efficiency when separating healthy samples from infected samples and an effectiveness of 67% when separating effectively treated samples from unsuccessfully treated samples.


Assuntos
Leishmaniose Cutânea , Psychodidae , Animais , Modelos Animais de Doenças , Humanos , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Psychodidae/parasitologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estados Unidos
7.
Polymers (Basel) ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202831

RESUMO

This study deals with the laser stereolithography manufacturing feasibility of copper-nickel nanowire-loaded photosensitive resins. The addition of nanowires resulted in a novel resin suitable for additive manufacturing technologies based on layer-by-layer photopolymerization. The pure and nanowire-loaded resin samples were 3D printed in a similar way. Their morphological, mechanical, thermal, and chemical properties were characterized. X-ray computed tomography revealed that 0.06 vol % of the composite resin was filled with nanowires forming randomly distributed aggregates. The increase of 57% in the storage modulus and 50% in the hardness when loading the resin with nanowire was attributed to the load transfer. Moreover, the decrease in the glass transition temperature from 57.9 °C to 52.8 °C in the polymeric matrix with nanowires evidenced a decrease in the cross-linking density, leading to a higher mobility of the polymer chains during glass transition. Consequently, this research demonstrates the successful dispersion and use of copper-nickel nanowires as a reinforcement material in a commercial resin for laser stereolithography.

8.
Protein J ; 38(5): 506-514, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31119600

RESUMO

Gold nanoclusters protected with bovine serum albumin (AuNC) can be used in multiple biomedical applications through functionalization with two new and bioactive peptides. Both cationic peptides sequences of 17 amino acids in length and the cysteine residue at its C-terminus were designed and synthesized. Peptides were obtained by solid phase synthesis using the Fmoc strategy. Peptides may be coupled via disulfide bonds to AuNC with hydrodynamic size ~ 2 nm ± 0.3 determined by dynamic light scattering and it had a zeta potential value equal to - 42 mV. Peptides named NBC2253 and NBC2254 were attached to the AuNC using N-succinimidyl-3-(2-pyridyl-dithiol) propionate as crosslinker agent. AuNC@NBC2253 was more active against methicillin-resistant Staphylococcus aureus (MIC50 6.5 µM) and AuNC@NBC2254 exhibited higher antimicrobial activity than the free peptides on Escherichia coli O157:H7 (MIC50 3.5 µM). No hemolysis was detected for any of the peptides. It is evidenced that these antimicrobial peptides conjugated to AuNC serve as promising agents to combat some multi-resistant bacterial strains and that the specific binding of these antimicrobial peptides to gold nanoclusters improves the interaction of these nanostructured systems with the biological target.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Ouro/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Infecções por Escherichia coli/microbiologia , Ouro/química , Humanos , Nanopartículas Metálicas/química , Modelos Moleculares , Nanoconjugados/química , Peptídeos/síntese química , Peptídeos/química , Infecções Estafilocócicas/microbiologia
9.
Chem Sci ; 10(29): 6966-6978, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31588263

RESUMO

A new strategy has been developed for characterization of the most challenging complex mixtures to date, using a combination of custom-designed experiments and a new data pre-processing algorithm. In contrast to traditional methods, the approach enables operation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with constant ultrahigh resolution at hitherto inaccessible levels (approximately 3 million FWHM, independent of m/z). The approach, referred to as OCULAR, makes it possible to analyze samples that were previously too complex, even for high field FT-ICR MS instrumentation. Previous FT-ICR MS studies have typically spanned a broad mass range with decreasing resolving power (inversely proportional to m/z) or have used a single, very narrow m/z range to produce data of enhanced resolving power; both methods are of limited effectiveness for complex mixtures spanning a broad mass range, however. To illustrate the enhanced performance due to OCULAR, we show how a record number of unique molecular formulae (244 779 elemental compositions) can be assigned in a single, non-distillable petroleum fraction without the aid of chromatography or dissociation (MS/MS) experiments. The method is equally applicable to other areas of research, can be used with both high field and low field FT-ICR MS instruments to enhance their performance, and represents a step-change in the ability to analyze highly complex samples.

10.
Polymers (Basel) ; 10(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30961249

RESUMO

This study presents the additive manufacture of objects using mass-functionalized photo-resins, which are additively photopolymerized using the laser stereolithography technique. The mass functionalization is based on the incorporation of copper nanowires used as fillers at different concentrations. Cylindrical and tensile test probes are designed and manufactured in a layer-by-layer approach using a low-cost laser stereolithography system working with a layer thickness of 100   µ m . The morphological, mechanical, thermal and chemical results help to show the viability and potential that this combination of mass-functionalized resins and technological processes may have in the near future, once key challenges are solved. Finally, some potential applications are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA