Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Mater ; 35(37): e2205381, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36222391

RESUMO

Novel memory devices are essential for developing low power, fast, and accurate in-memory computing and neuromorphic engineering concepts that can compete with the conventional complementary metal-oxide-semiconductor (CMOS) digital processors. 2D semiconductors provide a novel platform for advanced semiconductors with atomic thickness, low-current operation, and capability of 3D integration. This work presents a charge-trap memory (CTM) device with a MoS2 channel where memory operation arises, thanks to electron trapping/detrapping at interface states. Transistor operation, memory characteristics, and synaptic potentiation/depression for neuromorphic applications are demonstrated. The CTM device shows outstanding linearity of the potentiation by applied drain pulses of equal amplitude. Finally, pattern recognition is demonstrated by reservoir computing where the input pattern is applied as a stimulation of the MoS2 -based CTMs, while the output current after stimulation is processed by a feedforward readout network. The good accuracy, the low current operation, and the robustness to input random bit flip makes the CTM device a promising technology for future high-density neuromorphic computing concepts.

2.
Adv Mater ; 35(18): e2211993, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812653

RESUMO

Ionic gating is a powerful technique to realize field-effect transistors (FETs) enabling experiments not possible otherwise. So far, ionic gating has relied on the use of top electrolyte gates, which pose experimental constraints and make device fabrication complex. Promising results obtained recently in FETs based on solid-state electrolytes remain plagued by spurious phenomena of unknown origin, preventing proper transistor operation, and causing limited control and reproducibility. Here, a class of solid-state electrolytes for gating (Lithium-ion conducting glass-ceramics, LICGCs) is explored, the processes responsible for the spurious phenomena and irreproducible behavior are identified, and properly functioning transistors exhibiting high density ambipolar operation with gate capacitance of ≈ 20   -   50 µ F c m - 2 \[20{\bm{ - }}50\;\mu F c{m^{{\bm{ - }}2}}\] (depending on the polarity of the accumulated charges) are demonstrated. Using 2D semiconducting transition-metal dichalcogenides, the ability to implement ionic-gate spectroscopy to determine the semiconducting bandgap, and to accumulate electron densities above 1014 cm-2 are demostrated, resulting in gate-induced superconductivity in MoS2 multilayers. As LICGCs are implemented in a back-gate configuration, they leave the surface of the material exposed, enabling the use of surface-sensitive techniques (such as scanning tunneling microscopy and photoemission spectroscopy) impossible so far in ionic-gated devices. They also allow double ionic gated devices providing independent control of charge density and electric field.

3.
Nat Commun ; 13(1): 4327, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882862

RESUMO

Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.


Assuntos
Ferroptose , Neoplasias Pulmonares , Ferroptose/genética , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilcolinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
4.
Am J Pathol ; 173(3): 856-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18688024

RESUMO

Alterations in microRNA (miRNA) expression in both human and animal models have been linked to many forms of cancer. Such miRNAs, which act directly as repressors of gene expression, have been found to frequently reside in fragile sites and genomic regions associated with cancer. This study describes a miRNA signature for human primary hepatitis B virus-positive human hepatocellular carcinoma. Moreover, two known oncomiRs--miRNAs with known roles in cancer--the miR-17-92 polycistron and miR-21, exhibited increased expression in 100% of primary human and woodchuck hepatocellular carcinomas surveyed. To determine the importance of these miRNAs in tumorigenesis, an in vitro antisense oligonucleotide knockdown model was evaluated for its ability to reverse the malignant phenotype. Both in human and woodchuck HCC cell lines, separate treatments with antisense oligonucleotides specific for either the miR-17-92 polycistron (all six members) or miR-21 caused a 50% reduction in both hepatocyte proliferation and anchorage-independent growth. The combination of assays presented here supports a role for these miRNAs in the maintenance of the malignant transformation of hepatocytes.


Assuntos
Carcinoma Hepatocelular/genética , Hepatite B/genética , Neoplasias Hepáticas/genética , MicroRNAs/biossíntese , Animais , Apoptose/fisiologia , Northern Blotting , Western Blotting , Carcinoma Hepatocelular/virologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Citometria de Fluxo , Humanos , Neoplasias Hepáticas/virologia , Marmota , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
6.
Biotechniques ; 41(1): 59-63, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16869514

RESUMO

A number of natural microRNA (miRNA) hairpins have been found in clusters of multiple identical or different copies, suggesting that effects of miRNAs can be enhanced and multiple genes can be regulated together by encoding multiple miRNA hairpins in a single transcript. Here, we report a simple and effective artificial multi-hairpin method that stimulates production of mature 22-nucleotide small RNAs from modified miRNA hairpins, improves gene knockdown over single-hairpin constructs, and provides linked multi-gene knockdowns.


Assuntos
Técnicas Genéticas , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , MicroRNAs/genética , Modelos Genéticos , Dados de Sequência Molecular , Oligonucleotídeos/genética , Plasmídeos/metabolismo , RNA/metabolismo
8.
Neoplasia ; 18(5): 282-293, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27237320

RESUMO

The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

9.
Cell Rep ; 15(10): 2266-2278, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239040

RESUMO

The MYC proto-oncogene is a transcription factor implicated in a broad range of cancers. MYC is regulated by several post-translational modifications including SUMOylation, but the functional impact of this post-translational modification is still unclear. Here, we report that the SUMO E3 ligase PIAS1 SUMOylates MYC. We demonstrate that PIAS1 promotes, in a SUMOylation-dependent manner, MYC phosphorylation at serine 62 and dephosphorylation at threonine 58. These events reduce the MYC turnover, leading to increased transcriptional activity. Furthermore, we find that MYC is SUMOylated in primary B cell lymphomas and that PIAS1 is required for the viability of MYC-dependent B cell lymphoma cells as well as several cancer cell lines of epithelial origin. Finally, Pias1-null mice display endothelial defects reminiscent of Myc-null mice. Taken together, these results indicate that PIAS1 is a positive regulator of MYC.


Assuntos
Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genética , Animais , Carcinogênese/genética , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Meia-Vida , Humanos , Camundongos , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica/genética , Proteólise , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sumoilação , Transcrição Gênica
10.
Clin Cancer Res ; 22(23): 5851-5863, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27220963

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide due to the limited availability of effective therapeutic options. For instance, there are no effective strategies for NSCLCs that harbor mutant KRAS, the most commonly mutated oncogene in NSCLC. Thus, our purpose was to make progress toward the generation of a novel therapeutic strategy for NSCLC. EXPERIMENTAL DESIGN: We characterized the effects of suppressing focal adhesion kinase (FAK) by RNA interference (RNAi), CRISPR/CAS9 gene editing or pharmacologic approaches in NSCLC cells and in tumor xenografts. In addition, we tested the effects of suppressing FAK in association with ionizing radiation (IR), a standard-of-care treatment modality. RESULTS: FAK is a critical requirement of mutant KRAS NSCLC cells. With functional experiments, we also found that, in mutant KRAS NSCLC cells, FAK inhibition resulted in persistent DNA damage and susceptibility to exposure to IR. Accordingly, administration of IR to FAK-null tumor xenografts causes a profound antitumor effect in vivo CONCLUSIONS: FAK is a novel regulator of DNA damage repair in mutant KRAS NSCLC and its pharmacologic inhibition leads to radiosensitizing effects that could be beneficial in cancer therapy. Our results provide a framework for the rationale clinical testing of FAK inhibitors in NSCLC patients. Clin Cancer Res; 22(23); 5851-63. ©2016 AACR.


Assuntos
Dano ao DNA/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Radiossensibilizantes/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Rep ; 16(6): 1614-1628, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477280

RESUMO

KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and ß-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and ß-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ligases/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese/fisiologia , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Oxirredução
12.
J Virol ; 79(15): 9810-20, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16014942

RESUMO

The hepatitis B virus (HBV) core protein forms the capsid of viral particles and is essential for viral genome DNA replication and maturation. The C terminus of core protein contains three serines at positions 155, 162, and 170, phosphorylation of which is important for viral DNA replication. We demonstrate that the phosphorylation of these serines is stimulated by the viral HBx protein, a regulatory protein that activates signal transduction pathways and viral replication. HBx is therefore shown to stimulate HBV replication by increasing core serine phosphorylation. Mutational, biochemical, and mixing studies of C-terminal core serine mutants demonstrate that multiple serine phosphorylations occur on the same core protein. Mutation of individual core protein serines is shown to inhibit HBV replication at distinct stages corresponding to encapsidation of viral pregenomic RNA, reverse transcription, and restriction to synthesis of specific DNA replicative intermediates. We therefore demonstrate that a primary target of HBV replication that is regulated by HBx protein corresponds to increased phosphorylation of the viral core protein. We also demonstrate that core phosphorylation mediated by HBx promotes sequential progression of viral replication through the assembly of capsids primed for different stages of DNA synthesis.


Assuntos
Replicação do DNA , DNA Viral/biossíntese , Antígenos da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Serina/metabolismo , Transativadores/metabolismo , Proteínas do Core Viral/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Vírus da Hepatite B/genética , Humanos , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência , Proteínas do Core Viral/genética , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
13.
J Clin Microbiol ; 43(1): 254-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15634980

RESUMO

The 1896 precore (PC) mutation is the most frequent cause of hepatitis B virus e-antigen (HBeAg)-negative chronic hepatitis B virus (HBV) infection. Detection of the 1896 PC mutation has application in studies monitoring antiviral therapy and the natural history of the disease. Identification of this mutation is usually performed by direct sequencing, which is both costly and laborious. The aim of this study was to develop a rapid, high-throughput assay to detect the 1896 PC mutation using real-time PCR and molecular-beacon technology. The assay was initially standardized on oligonucleotide targets and plasmids containing the wild-type (WT) and PC mutation and then tested on plasma samples from children with HBV DNA of >10(6) copies/ml. Nine individuals were HBeAg negative and suspected to harbor HBeAg mutations, while 12 children were HBeAg positive and selected as controls. Ninety percent (19 of 21) of plasma samples tested with molecular beacons were in complete agreement with sequencing results. The remaining 10% (2 of 21) of samples were identified as heterogeneous mixtures of WT and mutant virus by molecular beacons, though sequencing found only a homogeneous mutant in both cases. Overall, the 1896 PC mutation was detected by this assay in 55.5% of the children with HBeAg-negative infection. In summary, this assay is a rapid, sensitive, and specific technique that effectively discriminates WT from 1896 PC mutant HBV and may be useful in clinical and epidemiological studies.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/genética , Sondas Moleculares/genética , Mutação , Reação em Cadeia da Polimerase/métodos , Precursores de Proteínas/genética , Adolescente , Criança , DNA Viral/análise , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/virologia , Humanos , Desnaturação de Ácido Nucleico , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA